
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1995

Effects of ear developmental temperature on fine
structure of maize starch
Ting-jang Lu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Agriculture Commons, Biochemistry Commons, Botany Commons, Chemistry
Commons, and the Food Science Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Lu, Ting-jang, "Effects of ear developmental temperature on fine structure of maize starch " (1995). Retrospective Theses and
Dissertations. 10960.
https://lib.dr.iastate.edu/rtd/10960

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10960?utm_source=lib.dr.iastate.edu%2Frtd%2F10960&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This maouscript has been reproduced £rom the miaofibn master. UMI 
jfilms the text directfy from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from ai  ̂type of computer printer. 

The quality of this reprodactioii is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and in^ffoper alignment can adversety affect reproduction. 

In the unlikely event that the author did not send UMI a complete 
manuscript and there are miswng pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note win indicate 
the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book. 

Photogr^hs inchided in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI direct  ̂
to order. 

A Bell & Hcjwell Information Company 
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 

313.'761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Effects of ear developmental temperature on 

fine structure of maize starch 

by 

Ting-jang Lu 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfilhnent of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Food Science and Human Nutrition 
Major: Food Science and Technology 

Approved: 

In Charge of Major Work 

For the Major Department 

For the Graduate College 

Members of the Committee: 

Iowa State University 
Ames, Iowa 

1995 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

UHI Number: 9540920 

tJMI Microform 9540920 
Copyright 1995, by OHI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title 17r United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103 



www.manaraa.com

ii 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS iv 

GENERAL INTRODUCTION 1 

Dissertation Organization 2 

Literature Review 3 

References Cited 22 

SEPARATION AND QUANTIFICATION OF MALTO-
OLIGOSACCHARIDES BY HIGH-PERFORMANCE 
ANION-EXCHANGE CHROMATOGRAPHY WITH PULSED 
AMPEROMETRIC DETECTION 35 

Abstract 35 

Introduction 36 

Experimental 38 

Results and Discussion 39 

Acknowledgments 45 

References Cited 45 

EFFECTS OF EAR DEVELOPMENTAL TEMPERATURE ON FINE 
STRUCTURE OF MAIZE STARCH 63 

Abstract 63 

Introduction 64 

Experimental 66 

Results and Discussion 71 

Acknowledgments 77 



www.manaraa.com

iii 

References Cited 77 

TEMPERATURE EFFECT ON RETROGRADATION OF AMYLOSE 
SOLUTION 93 

Abstract 93 

Introduction 94 

Experimental 97 

Results and Discussion 102 

Acknowledgments .110 

References Cited 110 

GENERAL CONCLUSIONS 130 

APPENDIX 132 



www.manaraa.com

iv 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to Dr. Jay-lin Jane for her advice, 

guidance and encouragement, during the pursuit of my degree at Iowa State University. 

Special thanks are to Dr. Dennis C. Johnson for his advice and kindly allowing me to 

use his equipment during my studies on the HPAEC-PAD. 

I also want to extend my appreciation to the members of my committee, Dr. 

Lawrence A. Johnson, Dr. Zivko Nikolov, Dr. Linda M. Pollak, Dr. John F. Robyt and 

Dr. Pamela J. White for their interest and valuable help. 



www.manaraa.com

1 

GENERAL INTRODUCTION 

Starch is the storage polysaccharide of most plants. It consists of a mixture of 

two similar polymers of glucose: the essentially linear amylose and the branched 

amylopectin. The starch of most plants contains about 20-25% amylose and 75-80% 

amylopectin, but this ratio is not fixed. 

The starch biosynthesis pathway is complicated and not completely understood. 

Although gross starch structure is similar in various species, the fine structure and 

granule characteristics still need further study (Beck and Ziegler, 1989; Boyer, 1985; 

Preiss, 1982; Preiss and Levi, 1980). Variations are associated with plant species, 

cultivars of a species, genetic mutations, growth stages, and the environment in which 

the plant is grown. 

Temperature is one environmental variable that cannot be manipulated in the 

field, and crops are often selected for a region on the basis of their response to the 

temperature ranges and growing season of that region. Moreover, temperature 

fluctuations have a great influence on both the quantity and quality of starch 

biosynthesis. Changes in environmental growth temperature and other climatic factors 

are responsible for variations in starch properties. This variation directly affects the 

grain quality and value, and is carried over as a quality control problem in some 

products. 

Effects of enviroiunental temperature on cereal crops have been reported. For 

example, high temperature (25/15°C and 35/25°C, day/night temperature) reduces whole 
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maize plant dry matter accimiulation during grain filling (Badu-Apraku et al..l983). 

High temperature also significantly decreases amylose content in the rice (Asaoka et al., 

1984) and maize starch of high-amylose strains (Fergason and Zuber, 1962) and changes 

fine structure of rice amylopectin (Asaoka et al.,1985). Development rate of maize does 

not follow a linear correlation with the temperature scale. Developmental response to 

temperature is not the same in all subperiods nor is it the same for all cultivars. 

Experimental results have shown that temperature fluctuations and the timing of these 

fluctuations are also important for both grain development and yield (Brown, 1977). 

However, despite the importance of growing temperature effects on grain growth, how 

temperature affects the biosynthesis of maize starch structures has not been extensively 

studied. 

Although the mechanism of temperature affecting the starch biosynthesis 

pathway is still not clear, the effects, perhaps, can provide an insight to understanding 

the regulation of starch biosynthesis. The objectives of the present study are to 

investigate how growth temperature affects the structure and functional properties of 

maize starch and how the temperature affects on branch chain formation during starch 

biosynthesis. 

Dissertation Organization 

This dissertation consists of three papers. The first paper entitled "Separation 

and Quantification of Malto-oligosaccharides by High-Performance Anion-Exchange 
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Chromatography with Pulsed Amperometric Detection" was an analytical method 

development for studying starch structure, and will be submitted for publication to the 

journal Carbohydrate Research. The second paper, "Effects of Ear Developmental 

Temperature on Maize Starch Fine Structure" was submitted for publication to the 

journal Carbohydrate Research. The third paper, "The Temperature Effect on 

Retrogradation of Amylose Solution," will be submitted to the same journal. The three 

papers follow the format of the journal Carbohydrate Research and are preceded by a 

General Introduction and followed by a General Conclusion. Literature cited in the 

General Introduction are listed in alphabetical order according to author's name at the 

end of this chapter. 

Literature Review 

Starch is a mixture of glucans which is found mainly in the plant kingdom. 

Starch occurs as the principal energy reserve polysaccharide and may be used during 

growth of the plant. Since starch forms the major source of carbohydrate in the himian 

diet, starch is of great economic importance, especially in food manufacture. Starch, 

modified starch, and starch derivatives have many uses in industry and the applications, 

and industrial demand of starch are growing. The history of starch in the development 

of the food and chemical industry has been reviewed (Whistler, 1965; Whistler, 1984). 
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Occurrence and morphology of starch 

The main sources of starch are the higher plants, where the polysaccharide is laid 

down in the insoluble form of greinules, although starch-like material also has been 

observed in some bacteria, protozoa, and algae (Greenwood, 1970; Shannon and 

Garwood, 1984). Starch is found in all parts of the plant, leaves, stem, shoots, and 

storage organs such as tubers, rhizomes, and seeds (Greenwood, 1970; Shannon and 

Garwood, 1984). The proportion varies from a few percent to 80% (e.g. grains of 

cereal) (Greenwood, 1970). The morphology of the starch granule is characteristic of 

the botanical source. According to the way they are deposited in the organelle, starch 

granules may be classified as (1) single granules, i.e. wheat and com, which grow as a 

single granule inside an amyloplast or chloroplast; (2) compoimd granules, i.e. rice and 

oat, in which many starch granules grow within a single amyloplast; (3) semi-compound 

granules, i.e. amaranth, which initially grow as two or more distinct granules and then 

fuse together; or (4) pseudo-compound granules, i.e. wrinkled pea, which grow as 

individual granules but which, upon drying, develop large cracks and split into apparent 

compound granules (Lineback, 1984; Shannon and Garwood, 1984). Starch size ranges 

from the sub-micrometer or several |am (e.g. amaranth, 0.5-2 |im; taro, 2-4 )im; and 

rice, 3-8 jim) to over 100 ^m (carma) in diameter (Fitt and Snyder, 1984; French, 1984; 

Jane et al., 1992; Jane et al., 1994). The shapes of granules are diverse, i.e. disc, 

elliptical, lenticular, round, oval, polygonal etc. Most granules appear to be built up in 

layers which partially or completely encircle the hilum, the original growrth point. The 

hilum is usually less organized than the rest of the granule (French, 1984; Lineback, 
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1984). The hilum position varies from centric (wheat) to extremely eccentric (banana) 

(Seidemann, 1966; Wivinis and Maywald, 1967; Czaja, 1969; Fitt and Snyder, 1984; 

French, 1984; Jane et al., 1994). Starch granules are birefringent in polarized light and 

exhibit the Maltese Cross pattern ranging from very brilliant (potato) to relatively weak 

(wheat) (Wivinis and Maywald, 1967; Fitt and Snyder, 1984). 

Organization of starch granule 

The heterogeneity of the starch granule, a mixture of linear and branch 

components, was experimentally proven by Maquenne and Roux (Maquenne, 1904; 

Maquenne and Roux, 1905). The two major components are amylose (the linear 

polymer) and amylopectin (the branched polymer). The amylose and amylopectin ratio 

varies with botanical source of the starch and greatly affects the characteristics of starch 

granules. The amylose content ranges from a trace amount (waxy rice and maize) to 70 

% or higher (wrinkled-seeded pea and amylomaize) (Young, 1984; Kennedy et al., 

1987). Most normal starch granules contain 20-30% amylose. Besides the two major 

components, Lansky et al. (1949) postulated that maize starch contained about 5-7% of 

a material, called intermediate fraction, having different properties from amylose and 

amylopectin. Although this intermediate fraction can be fractionated (Whistler, 1964; 

Banks and Greenwood, 1975; Takeda and Preiss, 1993; Wang et al., 1993) there have 

been no critical definition of this fraction. 

How the starch components are organized in the granules is not yet fully 

understood. In the late 19th century, a magnificent trichitic model (Figure 1) was 
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proposed by Meyer (1895). Lineback (1984) commented on the model, "The concentric 

ring concept is most remarkable because the concept of high polymers had not, then, 

been developed. Further, it was not then known that starch contained two major 

polysaccharide components." In 1969, Nikuni proposed a model of the starch granule in 

which all molecules were covalently bound together (Figure 2) (Nikuni, 1969; Nikuni, 

1978). It is unlikely that amylose is covalently bound to amylopectin because of its 

ease of leaching. This model was modified by Lineback in 1984 (Figure 3). The 

modified model incorporated the concept of double helices in the outer chains of 

amylopectin, a helical amylose-Iipid complex, and random coil conformations of 

amylose. According to the observation and investigation of the growth ring of the 

starch granule, an arrangement of the amylopectin molecules within a growth ring was 

proposed by Kainuma (1980) (Figure 4). The growth ring resulted by alternating high 

and low refractive index layers, which also differ in density, crystallinity, and resistance 

or susceptibility to chemical and enzymic attack (French, 1984; Lineback, 1984). The 

growth ring apparent layers represented the internal features of molecular arrangement 

in starch granules. The molecules in the granule are arranged in an ordered radial 

manner, thus resulting in its birefringent properties. The high density, crystallinity, and 

resistant layers were proposed as the highly ordered-alignment portion of amylopectin 

(Biliarderis, 1981). 

Recent investigations have provided more details to the structure of the starch 

granule. The location of amylose has been confirmed by using cross-linking reactions, 

and was shown to be interspersed among amylopectin and not present in bundles (Jane 
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et al., 1992; Jane et al., 1993; Kasemsuwan and Jane, 1994). Furthermore, the amylose 

content in the starch granule is more concentrated at the periphery of the granule (Jane 

and Shen, 1993). A starch crystallite model was proposed for the disposition of 

amylopectin, amylose and fatty acids in the maize granule by Zobel (1992) which 

showed the amylose molecules incorporated in amylopectin crystallites and amylose-

fatty acid complexes (Blanshard, 1987). 

Figure 1. Trichitic model of starch granule proposed by Meyer (1895). 
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Figure 2. Schematic representation of the organization of a starch granule proposed 

by Nikuni (1969). 

Figure 3. Schematic representation of the organization of a starch granule proposed 

by Lineback (1984). 
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Figure 4. Schematic representation of the arrangement of amylopectin molecules in 

a waxy maize starch granule proposed by Kainuma (1980). 
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Nature of amylose 

Amylose is an essentially linear a-D-glucopyranose polymer linked by a-(l->4) 

linkages bonds with a 500-5,000 degree of polymerization (Greenwood, 1970; Galliard 

and Bowler, 1987). The linear nature of amylose was generally accepted xmtil Peat et 

al. (1949, 1952) showed that crystalline sweet potato P-amylase only hydrolyzed 70% of 

the amylose to maltose. Using data for the hydrodynamic radius of amylose and 

multiple enzymic hydrolysis, Banks and Greenwood (1966 and 1967) showed that 

amylose contains some branch points. Hizukuri et al. (1981 and 1983) confirmed the 

muhi-branched nature of amylose from several plant sources. Recently, direct structure 

analytical evidence also was provided by Cura et al. (1995). Amylose, like other linear 

polymers, is prompt to retrograde. In aqueous solution, amylose molecules rapidly 

associate to build up molecular aggregates that soon exceed colloidal dimensions and 

precipitate (Whistler, 1965; Miles, et al., 1984; Colonna et al., 1992). The aggregation 

process is rapid, and the molecular size is too large to produce perfect crystallites 

(Flory, 1953; Greenwood, 1964). As a result, the precipitate is a mixture of crystalline 

and amorphous regions as indicated by X-ray diffraction patterns and acidic or 

enzymatic hydrolysis (Kainuma and French, 1971; Colonna et al., 1992; Cairns et al, 

1995). Retrograded amylose precipitate shows an A- or B-type X-ray pattern that 

depends on the retrogradation conditions (Hizukuri, 1964; Wu and Sarko, 1978; 

Kitamura et al., 1984; Buleon et al., 1984; Ring et al., 1987; Eerlingen et al., 1993; Le 

Bail et al., 1993; Cairns et al., 1995). The crystalline region can be 30 to 65% of the 

total amylose gel, and the amount differs with the retrogradation conditions (Jane and 
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Robyt, 1984; Cairns et al., 1995). This crystalline region is resistant to acidic and 

en2ymatic hydrolysis (Kainuma and French, 1971; Kainiuna et al., 1981; Jane and 

Robyt, 1984, Tsuge et al., 1991; Cairns, 1995). The conformation of the resistant 

crystalline region was proposed to be double helices interspersed with amorphous 

regions (Wu and Sarko, 1978; Kodama et al., 1978; Jane and Robyt, 1984) similar to 

the starch chains in starch granules (Kanuma, and French, 1971; Kainuma and French, 

1972; Yamaguchi et al., 1979; Oostergetel and van Bruggen, 1993). The chain length 

of the crystalline region from different studies varies (Jane and Robyt, 1984; Eerlingen 

et al., 1993; Cairns et al., 1995). 

The stability of an amylose aqueous solution is dependent on molecular size, 

temperature, concentration, pH, and the presence of other chemical agents in the 

solution (Whistler, 1953; Young, 1984; Ellis and Ring, 1985; Suzuki et al., 1985). It 

has been shown that amylose from different starch sources retrograde at different rates, 

depending upon their average molecular weight (Whistler and Johnson, 1948; Whistler, 

1953; Suzuki et al., 1985; Orford et al., 1987; Eerlingen et al., 1993). Amylose with 

DP 80 to 100 has the highest retrogradation tendency (Pfannemuller et al., 1971; 

Pfannemuller, 1986; Gidley et al., 1986; Gidley et al., 1989). Temperature is negatively 

correlated with retrogradation rate (Whistler, 1953). Suzuki et al. (1987) reported that 

an increase of retrograding temperature (0 to 30°C) of soluble starch solution resulted in 

a increase of the thermal transition temperature of retrograded starch in water. High pH 

deprotonates the hydroxyl group of amylose, and charge repelling inhibits the 

retrogradation process. Sugars increase retrogradation rate, whereas salts affect the rate 
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of retrogradation differently, depending on the salt species and concentration (Whistler, 

1953, Loewus and Briggs, 1957; Germani et al., 1983; I'Anson et al., 1990; Eerlingen et 

al., 1994; Biliaderis and Prokopowich, 1994; Le Botlan and Desbois, 1995; 

Prokopowich and Biliaderis, 1995). Complex formation of amylose with iodine and 

hydrocarbon compounds is also a well known characteristic of amylose (Schoch, 1942; 

Whistler, 1965; Kuge and Takeo, 1968; Pfannemuller et al., 1971; Banks and 

Greenwood, 1975; Handa and Yajima, 1980; Handa et al., 1980; Handa et al., 1981). 

Surfactants, lipids and long chain alcohols can form complexes with amylose and 

prevent or inhibit retrogradation. (Schoch, 1942; Lansky et al., 1949; Kuge and Takeo, 

1968; Whittam et al., 1986; Hibi and Kuge, 1987; Gudmundsson and Eliasson, 1990; 

Eelingen et al., 1994). 

Nature of amylopectin 

Amylopectin is a branched a-D-glucopyranose polymer linked by a-(l->4) 

linkages and about 5% a-(l->6) branch linkages with a 100,000 or larger degree of 

polymerization. The average branch-chain length is 20 to 25 (Whistler and Daniel, 

1984; Manners, 1985). For high-amylose maize starch, the branch-chain length of 

amylopectin is above 30 (Hizukuri et al, 1983; Hizukuri, 1985, Jane and Chen, 1992). 

Long branch-chain length of amylopectin results in higher gelatinization temperature of 

starch granules (Jane et al, 1992), higher gel strength of starch paste, and higher 

turbidity of starch solution (Jane and Chen, 1992). A polymodal distribution of the 

amylopectin branch chain was shown by Hizukuri (1986). The branch chain length of 
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amylopectin was correlated with the crystalline properties of starch granule. A-type 

starch has shorter branch-chain length than B-type starch (Hizukuri et al., 1983; 

Hizukuri, 1985, Chen and Jane, 1994). The chains of amylopectin are categorized into 

three types; (1) A-chains are those that are linked to the molecule only by their reducing 

ends; (2) B-chains are those that are linked to the molecule by their reducing ends but, 

in addition, are branched at C-6 position in one or more of their D-glucopyraonsyl 

residues; and (3) C-chain is the one that bears the reducing end group (Peat, 1956). The 

ratio of A- to B-chain is an important characteristic of amylopectin structure 

(Enevoldsen and Juliano, 1988). The A:B chain ratio is calculated from the amount of 

maltose and maltotriose liberated from p-amylolysis limit dextrin by pullulanase (Peat et 

al., 1956; Marshall and Whelan, 1974; Umeki and Yamamoto, 1977; Asaoka et al., 

1985). Manners (1985) summarized the results of previous studies and concluded that 

the A:B chain ratio of amylopectin ranges from 1.1 to 1.5. Several models have been 

proposed for amylopectin and extensively reviewed (Wolfrom and Khadem, 1965; 

Banks and Greenwood, 1975; Whistler and Daniel, 1984). The current, most adapted 

model is the cluster structure model (Figure 5) which was first proposed by Nikuni 

(1969, 1978) and sequentially modified by French (1972) and Robin et al. (1974) 

(Figure 5). Hizukuri (1986) based the further classification of the B chains, B1 to B4, 

on the observation of polymodal distribution of amylopectin branch-chains; the B chains 

were also classified into Ba and Bb chains on the basis of whether A chains were bound 

(Ba) or not bound (Bb) (Hizukuri and Maehara, 1990; Hizukuri and Maehara, 1991). 
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Figure 5. Cluster model for amylopectin structure proposed by (a) French (1972) 

and (b) Robin et al. (1974). 
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Starch biosynthesis 

Starch biosynthesis involves three distinct enzymic processes: initiation, chain 

elongation and branching (Beck and Ziegler, 1989; Boyer, 1985; Preiss, 1982; Preiss 

and Levi, 1980). It has been proposed that a priming molecule, e.g. malto-

oligosaccharides or glycoprotein, is required for initiating the biosynthesis of the starch 

chain, although this concept is currently the subject of some debate. Elongation of 

amylose and amylopectin outer branches occurs by the action of phosphorylase, starch-

granule bound starch synthase, and soluble starch synthase. Phosphorylase uses 

glucose-1-phosphate as the substrate to transfer a glucopyranosyl unit onto amylose 

chain. Bound starch synthase, bound to the granule presumably to the amylose 

component, uses either adenosine diphosphate glucose (ADPG) or uridine diphosphate 

glucose (UDPG) as the glucosyl unit donor, but prefers ADPG. Soluble starch synthase, 

however, exclusively uses ADPG as the gulcosyl donors. The waxy cereals, which do 

not produce amylose, are also lacking bound starch synthase. The starch synthases 

elongate starch chains by joining D-glucopyranosyl units to the non-reducing ends of 

amylose and amylopectin on the granular surface. When the outer chains of 

amylopectin become sufficiently long, branching enzyme transfer a a-1,4 linkage to a-

1,6 linkage. Unlike synthase, branching enzyme has little affinity for starch and can 

easily wash off from the granular surface (French, 1984). 
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Influence of environmental temperature on crop yield 

The effect of temperature on kernel development and mature kernel weight of 

some cereals, such as sorghum, rice, and wheat, has been studied by Chowdhury and 

Wardlaw (1978). Wheat and sorghum showed clear and well-defined optimum 

temperatures of IS/lCC (day/night temperature) and 27/22°C, measured by individual 

kernel dry weights, whereas rice showed a relatively small change in weight over the 

temperature range from 21/16°C to 30/25°C. As temperature increases, the duration of 

grain filling for all of the cereals investigated is reduced. Grain weight of wheat 

decreases when the temperature exceeds 20°C, because the increased grain filling rate is 

not sufficient to compensate for the reduced filling duration (Sofield et al., 1977). A 

comparison of the effects of high temperature on grain development in wheat and rice 

has been reported by Tashiro and Wardlaw (1989). Weight of matured grain of the 

wheat cultivar Banks was reduced by about 5% for each TC rise in daily mean post-

anthesis temperature in the range from 17.7 to 32.7''C, using grain weight at 17.7°C as 

the base. In contrast, the rice cultivar Calrose had stable grain weight up to 26.7°C. 

Above that temperature a 4.4% drop in weight per TC increase in mean post-anthesis 

temperature up to 35.7''C was observed. Grain weight at 26.TC was used as the base. 

In both wheat and rice there was a reduction in the duration of grain growth as 

temperature increased up to a mean of 26.7°C. In this range rice, but not wheat, showed 

a compensating increase in the rate of dry-matter accumulation. Above 26.7''C the rate 

of dry-matter accumulation fell in both species, although this was more stable in rice 

than in wheat. In wheat the duration of grain growth continued to decrease at 
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temperatures above 26.7°C up to 35.7°C. However there was only little change in rice 

up to 35.7°C (Tashiro and Wardlaw, 1989). 

This phenomena was also observed for potato tuber growth (Awan, 1964). Soil 

temperature decreased by mulching resulted in a significant increase in potato yields. 

Most of the decreased weight at elevated temperature in wheat is attributed to a 

reduction in the amount of starch deposited during grain filling. Moreover, the niraiber 

of small size starch granule (<10 um) was substantially reduced as temperature 

increased, but this reduction did not completely account for the smaller weight of starch 

per grain resulting from elevated temperature (Bhullar and Jenner, 1985). 

Influence of environmental temperature on starch deposit 

When the temperature is above the optimum for growth of cereals during the 

grain-filling period, single grain weight is reduced (Chowdhury and Wardlaw, 1978). 

Exposure of the ears alone, even for brief periods, is sufficient to elicit this response in 

wheat. Bhullar and Jenner (1983) reported that briefly elevating temperature of wheat 

ears reduced total grain weight as a result of a reduction in individual grain weight and 

a small reduction (2.6-12.8%) in grain number. Warming the ears temporarily reduced 

the amount of sucrose and other soluble sugars in the grain, but not in the rachis or the 

floral organs. They suggested that the supply of sugars to the grain was depressed by 

elevated temperature, but the rate of grain-filling was not reduced. This hypothesis was 

supported by later studies (Bhullar and Jenner, 1986). 
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Influence of environmental temperature on starch properties 

Properties of endosperm starch have been reported to be affected by genetic and 

environmental factors during the development of the plants. Although enviroiraiental 

effects are not as pronounced as those associated with genetic variations, environmental 

temperature could affect amylose content and the primary structure of starch granules 

such as crystalline structure and granular shape. Other physical properties, such as 

pasting characteristics, were also reported to be sensitive to the environmental 

temperature under which the starch granule was produced. 

Zuber (1965) reviewed studies on the genetic control of starch development 

including the environmental influence on the amylose content of com starch. He 

reviewed years of experimentation on amylose synthesis including location effects. He 

noted that high temperatures affected high-amylose strains more than low-amylose 

strains. No correlation was found between temperature and amylose content for 

ordinary corn. Fergason and Zuber (1962) showed that a high-amylose line grown in a 

Florida winter nursery had higher amylose contents than the same lines grown in 

Missouri during the summer. This observation led to an experiment in which strains 

ranging in amylose content were grown at eight locations in the United State for a 3-

year period. A negative correlation was found between amylose content and 

temperature during the growing season. The highest average amylose content was 

obtained at a Wisconsin location that had the lowest cumulative degree days, while the 

lowest amylose content was obtained at a North Carolina location that had the second 

highest cumulative degree days. 
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Zuber (1965) also suggested that conditions of environmental stress should be 

avoided. The influence of environment on amylose synthesis should be considered by 

those growing high-amylose hybrids for commercial production. Stress conditions that 

affect amylose synthesis may result from other factors, such as improper balance of soil 

nutrients and excessive plant populations. More information is needed on the effects of 

different cultural practices on amylose synthesis. 

Non-waxy starch in rice grains of the Japanese cultivars consists of 15-25% 

amylose and 75-85% amylopectin. Suzuki et al. (1966) grew rice plants {Oryza sativa 

L., Cultivar: Koshiji-wase) in a greenhouse at 17, 21, 25, and 30°C for 30 days after 

heading. The lower the temperature, the higher the "blue value" (absorbance at 680 nm 

of starch-iodine complex). Rice cultivars grown in Hokkaido, the most northern island 

of Japan, had higher contents of apparent amylose (21.1- 24.5%) than those (17.6-

21.6%) grown in other regions (Inatsu et al., 1974). Differences in amylose 

concentration depended mainly on rice cultivar. However, this study suggested that cold 

weather resulted in higher amylose contents in the same rice cultivar. Temperature 

during rice grain ripening is suggested as the dominant environmental factor affecting 

amylose content (Gomez, 1979). 

Asaoka et al. (1984) grew rice plants, Nippongare, Koshihikari, and Hokuriku 

cultivars, in a greenhouse at 25 and 30°C after heading. Rice plants grown at 30°C had 

decreased amylose contents compared with those grown at 25°C. Amylose and 

amylopectin were affected most by environmental temperature at 5 to 15 days after 

anthesis, i.e., at an early stage of the grain filling period when endosperm starch 
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accumulation is most active. Moreover, higher environmental temperature may have 

increased the amount of long B chains of amylopectin and decreased the short chains of 

amylopectin in rice endosperm. 

To confirm the effect of the enviroiraiental temperature on the fine structure of 

amylopectin, further investigation was undertaken by Asaoka et al. (1985) using waxy 

and non-waxy near-isogeneic lines of a Japonica rice cultivar, Taichung 65. Non-waxy 

rice plants grown at 30°C, compared to those grown at 25 °C, had decreased amy lose 

contents. Waxy rice had increased amount of long B chains of amylopectin with 

decreased short B chains and slightly decreased A chains. 

Temperature effect on branching enzyme action and amylose conformation 

The branching en2yme, Q-enzyme, is required for the synthesis of the a-D-

(1^6) branch linkages in amylopectin (Lavintman, 1966; Manners, et al., 1968). 

Whelan (1971) showed that this branching enzyme catalyzed the transfer of one amylose 

chain to another chain of average chain lengths (CL) of 48 and 260. The effect of 

amylose on different chain lengths was also studied (Borovsky and Whelan, 1972). It 

was shovm that only amylose chains of CL > 50 act efficiently as donors or acceptors 

of the transferred segments. The minimum CL of an amylose for Q-enzyme substrate 

was 30-40 (Borovsky et al., 1975). The requirement of Q-enzyme for amylose for CL > 

50 may be related to the tendency of amylose of this length to form tertiary structures, 

double helices (Kainuma and French, 1972; Borovsky and Whelan, 1972; Borovsky et 

al., 1975; Borovsky et al., 1976). The studies of Borovsky and Smith (1974) showed 
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that the Q-enzyme could react with amylose of smaller chain length at 4°C compared 

with amylose at 35°C. They also showed that the difference in the branching patterns 

developed at 4 and 35°C was not caused by differences in temperature coefficients of 

the Q-en2yme and the potato phosphorylase. These studies suggest that the large 

proportion of short chains found in native amylopectin may represent residual chains 

rather than chain segments that have been transferred by Q-en2yme. 
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Abstract 

High-performance anion-exchange chromatography (HPAEG) with pulsed 

amperometric detection (PAD) was used to separate and quantify malto-

oligosaccharides. Alkaline eluent, 100 mM to 500 mM sodium hydroxide solution, was 

used for direct detection of carbohydrates on a set of gold working and calomel 

reference electrodes. Chromatographic capacity factors, k', of malto-oligosaccharides 
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increased as molecular size increased. Sodium hydroxide alone was not adequate for an 

optimal malto-oligosaccharide separation. Sodium acetate, nitrate and sulfate were 

tested as pushing agents. The salts were compatible with the system, increased the 

separation selectivity and enhanced the detector response of PAD. The ability of 

pushing agents to decrease k' followed the order of sulfate > nitrate > acetate > 

hydroxide. After being eluted with pushing agents, the column regeneration time of 

CarboPac PAl was 180, 240 and 360 minutes for acetate, nitrate and sulfate, 

respectively. A procedure to shorten the regeneration time for malto-oligosaccharide 

separation was demonstrated in this study. Sodium azide, as a preservative, did not 

affect the separation and quantification of the analysis. Sodium nitrate was the best 

pushing agent for the homologous malto-oligosaccharide separation. 

Introduction 

Carbohydrates, being weakly acidic, can be adsorbed as anions'- - and separated 

by anion-exchange colunms in alkaline pH conditions. Alkaline conditions are, 

therefore, appropriate for the direct detection of all carbohydrates by using a pulsed 

amperometric detector (PAD) with an electrode of noble metap•^ PAD, the detection 

unit, was invented by Hughes et al. for detecting alcohols®, sugars and sugar alcohols^ 

with 100 times more sensitivity than conventional refractive index detectors'*. PAD 

utilizes triple-step potential-time waveforms, detection, oxidation and reduction 

potential. Carbohydrates were oxidized on the PAD electrode surface at the detection 
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potential in the waveform. Following the detection step, the amperometric detector 

alternated anodic and cathodic polarizations to clean and reactivate the electrode 

surface'. 

Rocklin and Pohl® introduced high-performance anion-exchange chromatography 

(HPAEC) v«th PAD for carbohydrate analysis in 1983. HPAEC v«th PAD is a 

powerful separation and analysis tool for carbohydrate chemistry research'. Sugar 

alcohols'""''', aminosaccharides'^' ''', acidic'^- and neutral monosaccharides'®"''', 

oligosaccharides'"' '®"" and polysaccharides^""^', without any derivatization, have been 

easily separated by using HPAEC with alkaline mobile phases and directly detected by 

the highly sensitive and selective PAD. 

The chromatographic capacity factor value, k', of carbohydrates increases as 

molecular size increases and pKa decreases'". In general, the affinity of carbohydrates 

to an anion resin follows the order of sugar alcohols < monosaccharides < 

oligosaccharides < polysaccharides^. A wide range of oligo- and polysaccharides""'^'' 

(acidic"®"^', glycoconjugate'''' linear'®- branched^' and cyclic^") have been effectively 

separated with this system. With the HPAEC-PAD system, a homologous series of 

oligo- and polysaccharide mixtures with different degrees of polymerization (DP), up to 

50 or higher^'-zmd oligosaccharide isomers"'also have been successfully 

separated. 

For improving carbohydrate separation, pH gradient or pushing agent gradient 

was used with the HPAEC-PAD system. Pushing agents, non-oxidizable anion salts, 

were used to change the ionic strength of the eluents and thus optimize retention time 
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and resolution of large molecular carbohydrates in the anion-exchange column. Sodium 

hydroxide, acetate, carbonate, nitrate and sulfate were evaluated as pushing agents by 

Rocklin and Pohl®. Acetate was preferred for oligosaccharide separation, because its 

anion exchange resin affinity is similar to that of hydroxide. A sodium hydroxide 

gradient^^ and a sodium acetate gradient^-were used in high pH (12-14) eluents 

for sugar alcohols, and neutral and basic carbohydrates. Hotchkiss and Hicks"^ used a 

potassium oxalate gradient in low pH (6.0) eluents for acidic carbohydrate analysis. 

The observed disadvantages of all of the mentioned procedures include baseline shift'-

caused by acetate or oxalate concentration gradient and different detector responses 

for different carbohydrates'^' 

The purpose of this work was to use linear malto-oligosaccharides to investigate 

suitable pushing agents and to study the effects of those pushing agents on the detector 

response. 

Experimental 

Materials. Glucose (Fisher Scientific, Springfield, NJ), maltose, maltotriose, 

maltotetraose, maltohexaose, maltoheptaose (Aldrich Chemical Co., Milwaukee, WI), 

and maltopentaose (Hayashibara Shoii Inc., Okayama, Japan) were used without further 

purification. Sodium acetate, sodium nitrate and sodium sulfate and 50% (weight 

percentage) sodium hydroxide stock solution (Fisher Scientific, Pittsburgh, PA), and 

sodium azide (Mallinckrodt Chemical Works, St. Louis, MO.) were ACS certified grade 
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chemicals. Triple-distilled water was purified further in a Millipore Milli-Q system 

(Millipore Corp., Bedford, MA). All mobile phases containing sodium hydroxide were 

diluted from a 50% sodium hydroxide stock solution, filtered before use (0.45 /xm 

Nylon-66 filter, Rainin Corp., Wobum, MA) and degassed under vacuum. 

Chromatographic apparatus. Separations were performed by using a CarboPac 

PAl column (250 mm x 4 mm i.d.), a Dionex pulsed amperometric detector with a gold 

working electrode (Dionex Corp., Simnyvale, CA) and satxirated calomel reference 

electrode (Fisher Scientific, Springfield, NJ), and a Dionex analytical pump with a 0.8 

ml/min flow rate. Pulse potentials (volt) and durations (time, millisecond) used for this 

work on the PAD were: E, = 0.05 V, t, = 480 ms, E, = 0.7 V, tj = 120 ms, and E3 = -

0.7 V, tj = 360 ms. The response time of the detector was set for 3 sec. Data were 

collected with a strip-chart recorder or an integrator (Model 427, Beckman Instrument 

Inc., Berkeley, CA). 

Results and Discussion 

The effects of sodium hydroxide concentration on chromatographic capacity 

factors, k', of malto-oligosaccharides are shown in Figure la. The k' of malto-

oligosaccharides increased as glucose unit numbers increased, confirming the results of 

Koizumi et al.^' With the 100 mM sodium hydroxide solution eluent, the k' of 

maltotetraose was 120, which was too large for practical analysis. The relationship 
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between increased k' and increased degree of polymerization (DP) is attributed to the 

increased number of ionized hydroxyl groups in the alkaline solution, which produced 

higher molecular adsorption onto the anion exchange resin. An increased concentration 

of sodium hydroxide in the eluent decreased the k' but resulted in a noisy baseline. At 

concentrations below 500 mM, the retention of maltoheptaose was too long to be 

practical, and the peaks were too broad to be accurately integrated. The results 

indicated that an eluent of at least 500 mM of sodium hydroxide was needed when 

applied alone to reduce the k' of maltoheptaose to a reasonable range for analysis, 

improving peak integration. At 500 mM of sodium hydroxide or above, the detector 

noise was too high to perform an accurate and reliable analysis; additionally, column 

pressure increased. Therefore, the addition of a pushing agent to the eluent is essential 

for accurate analysis. 

Sodium salts of acetate, nitrate, and sulfate were used to increase the ionic 

strength of the eluent and to function as pushing agents. A baseline separation of a 

mixture of glucose to maltoheptaose could be achieved with a k' value less than 10 by 

adjusting the concentration of the selected pushing agents. The pushing agents 

effectively decreased the k' without increasing baseline noise. The effects of the 

pushing agents on malto-oligosaccharide k' are shown in Figures Ib-d. On an isocratic 

system, the optimal pushing agent concentrations for malto-oligosaccharide separation 

on a CarboPac PAl column with a 100 mM sodium hydroxide basis were 200 mM, 30 

mM and 15 mM for acetate, nitrate and sulfate, respectively. The differences in the 

optimum concentrations of the pushing agent was a result of their affinity for the anion 
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exchange resin. A pushing agent with higher anion exchange resin affinity can be 

effective at a lower concentration. The ability of pushing agents to decrease k' followed 

the order of sulfate > nitrate > acetate > hydroxide. The system performed a precise 

analysis and the deviation of k' of malto-oligosaccharides in all analytical conditions 

was 1% or less. Sodium azide, a preservative, was well separated from malto-

saccharides and did not affect the separation and quantification of malto-

oligosaccharides (data not shown). 

For comparing concentration effects of the pushing agents on malto-

oligosaccharide detector responses, the response of maltose in 100 mM sodium 

hydroxide was assigned a value of 100 and a relative detector response for each sugar 

was used in all of the analysis. Detector responses of malto-oligosaccharides were 

affected by concentrations of sodium hydroxide and pushing agents (Figure 2). Glucose 

had a distinctly higher detector response than other malto-oligosaccharides in all eluents 

tested. The high detector response of glucose may be due to its small molecular size 

and a high proportion of the latent aldehyde group that can be promptly oxidized to 

acid. The detector responses of malto-oligosaccharides decreased as molecular size 

decreased. The reason for this detector response decrease is not well understood. 

Detector responses of the malto-oligosaccharides at different sodium hydroxide 

concentrations and with pushing agents differed. The detector responses of malto-

oligosaccharides at different sodium hydroxide concentrations are shown in Figure 2a. 

The plot of logio (detector response) versus malo-oligosaccharide degree of 

polymerization yielded a line. The detector-response slope was enhanced by sodium 
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hydroxide concentration. As the concentration increased, the slope of the line decreased 

(Figure 2a). This effect was apparent on detector responses for maltotriose, 

maltotetraose and maltopentaose. The detector responses for these malto-

oligosaccharides in 400 mM and 500 mM sodium hydroxide were significantly larger 

than the responses in 100 mM or 200 mM. The deviation of detector response in this 

analysis using sodium hydroxide alone as the eluent was high because of the difficulty 

of peak integration. Two reasons for the difficulty in obtaining accurate detector 

responses under these operating conditions were: first, the higher concentrations of 

sodium hydroxide resulted in higher background noise; and second, peaks with high k' 

were broadened. In contrast, the detector response slopes of malto-oligosaccharides 

eluted by mixtures of 100 mM sodium hydroxide and different pushing agent 

concentrations (Figure 2b-d) showed no significant differences, except the mixtures with 

50 mM sodium acetate and 20 mM sodium sulfate. The 50 mM sodium acetate mixture 

did not elute maltohexaose and maltoheptaose within 90 min. Conversely, the sodium 

hydroxide with 20 mM sodium sulfate mixture was so powerful that all the malto-

oligosaccharides were eluted within 4 min; this produced partially overlapped glucose, 

maltose, and maltotriose peaks. 

To quantify the malto-oligosaccharide analysis, reproducible linear relationships 

between sugar concentration and detector response are essential. Results of six different 

concentrations of malto-oligosaccharides subjected to HPAEC-PAD analysis and eluted 

by 500 mM sodium hydroxide showed good linear PAD response, although the detector 

response of each sugar was different. The linear relationships between concentrations 
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and detector responses of maltose, maltotriose, maltopentaose and maltoheptaose in 500 

mM sodium hydroxide are shown in Figure 3. The detector responses of malto-

oligosaccharides eluted by 100 mM sodium hydroxide and pushing agents (acetate, 

nitrate and sulfate) were similar, but greater than those eluted by 500 mM sodium 

hydroxide alone (Figure 4). Correlation coefficients of detector response and malto-

oligosaccharide concentrations eluted by different eluents are shown in Table 1. 

Standard deviations of malto-oligosaccharide detector responses showed that acetate and 

nitrate added to eluent generated more precise measurements than sulfate and sodium 

hydroxide alone (100 mM and 500 mM) (Figure 5). 

Based on the ability to control k', detector response, linearity and reproducibility, 

acetate and nitrate are good pushing agents. Sodium nitrate is a neutral salt with a 

higher solubility than sodium acetate (88g and 46.5g, in lOOg water at 20°C, 

respectively)^^. This property makes sodium nitrate a versatile pushing agent that also 

can be used in a neutral eluent. Relative viscosities for 1% solutions of sodium 

hydroxide, acetate, nitrate and sulfate at 20°C are 1.052, 1.038, 1.005 and 1.024, 

respectively^®. The lower colunm pressure, resulting from the lower viscosity of sodium 

nitrate solution, is another of its advantages as a pushing agent. 

When the anion exchange resin is at an alkaline pH, the majority of anion 

exchange groups are bound to hydroxide ions. When a pushing agent was used, 

following each separation, the hydroxide ions are replaced by anions of the pushing 

agent. Before loading the next sample, the resin must be regenerated to the OH-form. 

Glucose was used to evaluate the CarboPac PAl column regeneration time. The times 
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required to regenerate the column for different pushing agents were different. The 

regeneration times for eluent mixtures of 100 mM sodium hydroxide with 400 mM 

acetate, 60 mM nitrate and 30 mM sulfate, returning to 100 mM hydroxide base eluent, 

were 180, 240 and 360 min, respectively (Figure 6). Regeneration time was related to 

the affinity of the pushing agent. The time periods required for column regeneration 

were too long for practical operation. 

The column regeneration time can be shortened by using a low concentration 

pushing agent and sodium hydroxide mixture as a base eluent (e.g., Figure 7). Maltose 

was used to evaluate the column regeneration time, from working eluent (high pushing 

agent concentration) to the base eluent (low pushing agent concentration), in which 

glucose retention time was too short to precisely evaluate the time difference. For 

malto-oligosaccharide separation, the column can be regenerated within 30 min 

regardless of the pushing agent used. 

Under alkaline conditions on HPAEC, the malto-oligosaccharide column capacity 

factor increased as degree of polymerization increased. Non-oxidizable anion salts as 

pushing agents were essential for an accurate analysis of malto-oligosaccharides. The 

abilities of anions to adjust the chromatographic capacity factors of malto-

oligosaccharides followed the order of sulfate > nitrate > acetate > hydroxide. On a 

weight concentration basis using PAD, the detector response of malto-oligosaccharides 

decreased as degree of polymerization increased. The use of pushing agents also 

enhanced the detector response of malto-oligosaccharides. Acetate and nitrate both 

performed as good pushing agents, with the latter having a higher ability to control the 
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malto-oligosaccharide chromatographic capacity factor. Sodiiim nitrate was found to be 

a versatile pushing agent in a HPAEC, which can be used at alkaline and neutral pH for 

separating and elucidating basic, acidic and neutral polysaccharide molecular structure. 
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Table 1. The Correlation Coefficients' of Detector Response and Weight Concentration of 
Malto-oligosaccharides. 

Malto-
saccharides 

500 mM NaOH 200 mM CHjCOONa 
+ 

100 mM NaOH 

30 mM NaNOj 
+ 

100 mM NaOH 

15 mM Na2S04 
+ 

100 mM NaOH 

Glucose 0.973 0.978 0.943 0.907 

Maltose 0.995 0.999 0.994 0.989 

Mlatotriose 0.989 0.998 0.992 0.991 

Maltotetraose 0.983 0.998 0.995 0.993 

Maltopentaose 0.967 0.988 0.974 0.959 

Malotohexaose 0.930 0.998 0.988 0.977 

Maltoheptaose 0.934 0.998 0.994 0.983 

' Results from triplicate samples at six different concentrations. 



www.manaraa.com

50 

1 

O lOOmM • 400mM 

• 200mM • 500inM 

V 300mM ^ 
1 

1 

1 

- 1  
1 

GS G7 G6 G5 G4 G3 G2 G1 

GLUCOSE UNITS 

Figure la. The effect of concentration of sodium hydroxide as a pushing agent on 
chromatographic capacity factors for malto-oligosaccharide on CarboPac 
PAl column. The retention time of water used as an unretained 
component for calculating capacity factor was 1.4 min. 
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Figure lb. The effect of concentration of sodium acetate as a pushing agent on 
chromatographic capacity factors for malto-oligosaccharide on CarboPac 
PAl column. The retention time of water used as an unretained 
component for calculating capacity factor was 1.4 min. 
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Figure Ic. The effect of concentration of sodium nitrate as a pushing agent on 
chromatographic capacity factors for malto-oligosaccharide on CarboPac 
PAl column. The retention time of water used as an unretained 
component for calculating capacity factor was 1.4 min. 
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Figure Id. The effect of concentration of sodium sulfate as a pushing agent on 
chromatographic capacity factors for maho-oligosaccharide on CarboPac 
PAl column. The retention time of water used as an unnretained 
component for calculating capacity factor was 1.4 min. 
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Figure 2a. The effect of concentration of sodium hydroxide as a pushing agent on 
PAD detector responses of malto-oligosaccharide. The detector response 
of maltose in 100 mM sodium hydroxide was assigned as 100. 
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Figure 2b. The effect of concentration of sodium acetate as a pushing agent on PAD 
detector responses of malto-oligosaccharide. The detector response of 
mahose in 100 mM sodium hydroxide was assigned as 100. 
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Figure 2c. The effect of concentration of sodium nitrate as a pushing agent on PAD 
detector responses of malto-oligosaccharide. The detector response of 
maltose in 100 mM sodium hydroxide was assigned as 100. 
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Figure 2d. The effect of concentration of sodium sulfate as a pushing agent on PAD 
detector responses of malto-oligosaccharide. The detector response of 
maltose in 100 mM sodium hydroxide was assigned as 100. 
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Figure 3. The relationship between concentration of malto-oligosaccharide and PAD 
detector response in 500 mM NaOH eluent. (data are the average of 
triplicate samples.) 
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Figure 4. Different pushing agents on PAD detector responses of malto-
oligosaccharide. (the data are the average of six different concentrations 
of triplicate samples.) 
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Figure 5. The percent deviation of the detector responses for malto-oligosaccharides 
on PAD. The deviation values were calculated from triplicate samples at 
six different concentrations. 
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Figure 6. The regeneration time of CarboPac PAl column. Testing conditions: 
Switching eluent from 400 mM sodium acetate, 60 mM sodium nitrate 
and 30 mM sodium sulfate with 100 mM sodivmi hydroxide to 100 mM 
sodium hydroxide alone. Retention time of glucose in 100 mM sodium 
hydroxide was used as a control. Data are the average of triplicate 
samples. 
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Figure 7. The regeneration time of CarboPac PAl column from high concentration 
to low concentration of pushing agents. Testing conditions: Sodium 
acetate from 400 to 100 mM, sodium nitrate from 60 to 10 mM and 
sodium sulfate from 30 to 5 mM with 100 mM sodium hydroxide as base, 
Retention times of maltose in low concentrations of pushing agents were 
used as controls. Data are the average of triplicate samples. 
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EFFECTS OF EAR DEVELOPMENTAL TEMPERATURE ON 

FINE STRUCTURE OF MAIZE STARCH' 

A paper submitted to Carbohydrate Research 

Ting-jang Lu", Jay-lin Jane^'^ Peter L. Keeling'', George W. Singletary'' 

Abstract 

Growing temperature is known to affect the grain yield and quality of maize. 

Two genetically unrelated normal dent maize inbreds, ICI63 and ICI92, with different 

heterotic backgrounds were grown in a greenhouse with the ears wrapped in temperature 

control devices set at 25 and 35°C during the grain-filling period. Grain yield, kernel 

weight, and kernel density were less for ears at 35°C than those at 25°C. The extent of 

the loss, however, varied with the variety: 13.1 and 37.9% kernel weight loss and 8.47 
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and 10.08% density loss for ICI63 and ICI92, respectively. The starch granule shape of 

ICI63 became more oval-shaped, but there was no shape change for ICI92. As growing 

temperature increased, starch granule size decreased, and gelatinization onset 

temperature increased. With increased developmental temperature, amylose content, 

determined by iodine affinity, decreased 2.39% for ICI63 and 2.20% for ICI92; amylose 

molecular size of both varieties also decreased. When the ear developed at 35°C, size-

exclusion chromatography and high- performance anion exchange chromatography 

revealed an increased medium branch-chain fraction and decreased long and short 

branch-chain fractions for ICI63 amylopectin, whereas ICI92 amylopectin possessed 

increased long and medium branch-chain fractions and decreased short branch-chain 

fraction. 

Introduction 

Temperature is one envirormiental variable that cannot be manipulated in the 

field, and crops are often selected for a region on the basis of regional temperature. 

Temperature fluctuations affect growth and yield of grains: wheat'"^, rice''^''", sorghum', 

£ind maize""'^ and tubers; cassava'® and potato'^'". Changes in growth temperature 

resuh in different whole-plant dry matter'^, mature grain weight®, and starch properties'" 

Brown'" reviewed maize environmental temperature responses and identified four 

major effects: 1) development rate was not a direct function of temperature; 2) 

developmental response to temperature was not the same in all developmental 
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subperiods nor was it the same for all cultivars; 3) other envirorunental variables needed 

to be considered in some developmental subperiods; and 4) temperature fluctuations, 

particularly diurnal range differences might affect development rate, and the timing of 

the fluctuations might be very important. 

Starch biosynthesis is directly affected by environmental temperature^'"*''. 

Temperatures higher than the optimum reduce the starch deposition rate in cereal 

grains'' ^ and potato tubers'^*and also shorten the duration of wheat and rice grain 

filling^' Because temperature changes affect starch biosynthesis, the structures of 

starch from different developmental temperatures differ. High temperature significantly 

decreases the amy lose contents in rice' and high-amylose maize starch" and changes the 

fine structure of rice amylopectin'". Different developmental temperatures change starch 

structures and result in property differences. This variability in starch quality 

necessitates continuous adjustments of many industrial processing parameters and results 

in quality control problems for various products. 

The studies mentioned, except those works of Bhullar and Jermer ^ on wheat, 

involved temperature and other environmental variable effects on whole plants. The 

objective of this work was to reveal, by minimizing other envirormiental variables, 

effects of developmental temperature of maize ear on maize grain quality and on starch 

fine structure. 
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Experimental 

Materials. The following materials were purchased and used without 

modification; Spectra/Mesh macroporous 53 urn nylon filters (Spectrum, Los Angeles, 

CA); amyloglucosidase (EC 3.2.1.3) from Rhizopus mold (Sigma Chemical CO., St. 

Louis, MO); Glucose Diagnostic Kit 115-A (Sigma Chemical CO., St. Louis, MO); 

Isoamylase (EC 3.2.1.68) from Pseudomonas amyloderamosa ATCC 21262 

(Hayashibara Biochemical Laboratories, Inc., Okayama, Japan); Sepharose CL-2B gel 

(Pharmacia Inc., Piscataway, NJ); and Bio-Gel P-6 gel (Bio-Rad Laboratories, Hercules, 

CA). 

Production of starch at different developmental temperatures. Two genetically 

uru-elated normal dent maize inbreds, ICI63 and ICI93, with different heterotic 

backgrounds were produced by ICI Seeds, Slater, lA. The maize inbreds are used in 

commercially available hybrids and are proprietary to ICI Seeds. The maize plants were 

grown in an environmentally controlled greenhouse with a temperature of 20-25°C and 

a photoperiod of 15 hr. After 14 days post-pollination, heating mantles were placed on 

the maize ears and a thermocouple was inserted between the developing kernels and the 

husk for controlling the ear developmental temperature at 25 and 35°C until maturity, as 

defined by black layer formation. The 14-day post-pollination waiting-period was to 

avoid adverse effects on ear development^-'. The 25°C sample group was used as the 

control, because the greatest maize yields are associated with daytime maximums of 24-



www.manaraa.com

67 

30°C-®. Grain from six ears at 25°C was collected, bulked together, and called the 25°C 

sample; grain from each of four heated (35°C) ears was maintained separately for kernel 

dry weight and kernel density determination, then bulked together for other analysis, and 

called the 35°C sample. 

Determination of kernel dry weight and kernel density. Kernel dry weight was 

measured by using 10 kernels for each sample, after the kernels were dried in a forced-

air oven at 80°C for 48 hr. To adjust moisture for kernel density determination, the 

kernels were equilibrated to approximately 12% moisture in a temperature-humidity 

controlled incubator at 27°C and 67% relative humidity. Kernel density was measured 

by using a Multi-Pycnometer Model MVP-1 (Quantachrome Crop., Syosset, NY) with 

nitrogen gas. 

Determination of proximate chemical composition. For determination of 

proximate chemical composition, maize kernels were ground by using a coffee mill 

(Model KSM2, Braun, Lynnfield, MA). Kernel moisture was determined by following 

the modified vacuum-oven method, AACC Approved Methods of Analysis 44-40". 

Protein content was determined by following the Kjeldahl method, AACC Approved 

Methods of Analysis 46-12^^, and 6.25 was used as the nitrogen-protein conversion 

factor. Kernel starch content was measured by following AACC Approved Methods of 

Analysis 76-11^^ with modifications in which the glucose content of the hydrolysate was 

analyzed by using a Sigma Diagnostics Kit for Determination of Glucose 115-A^l 
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Starch isolation and fractionation. Starch from four samples (two inbreds at two 

developmental temperatures) was isolated in the laboratory by following the methods of 

Badenhuizen"' with minor modifications. The kernels were soaked in a 0.01 M 

mercuric chloride solution for two days to soften the kernels and to prohibit the activity 

of kernel amylase. The soaked kernels were blended by using a Hamilton Beach 

blender, Model 585-1 (Hamilton Beach Inc. Washington, NC) with two parts of 0.01 M 

mercuric chloride solution for 3 min. The germ and fiber residues were removed by 

filtering through gauze and a 53-/im nylon Spectra/Mesh macroporous filter. The 

protein was removed from the starch slurry by using a sodium chloride solution (0.1 M) 

with saturated toluene. Starch was collected by using a higher relative centrifuge force 

(3,500 X g, 20 min) than described to prevent loss of small starch granules. 

Fractionation of amylose and amylopectin was carried out by following the 

general procedure of Schoch^" with slight modifications^'. The recrystallization 

procedures for purifying amylopectin and amylose were repeated four times. 

Determination of starch granule size. The isolated starch was mounted on a 

glass microscope slide and viewed with a Zeiss axiophot microscope (Zeiss-Kontron, 

Thomwood, NY) at 50x magnification (20x by 2.5x optivar). Images of the starch 

granules were obtained by folloMdng the procedure described by Jane et al.^-. 

Starch X-ray diffraction pattern. Starch samples were moistened by equilibrating 

them in a saturated relative humidity chamber for one day at room temperature. Starch 
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X-ray diffraction was performed on a Siemens D-500 x-ray diffractometer (Siemens, 

Madison, WI) with copper Ka radiation. The signal of reflection angle, 20, from 4 to 

40 degrees, was recorded. Other operations followed procedures described 

elsewhere^"'^^. 

Determination of starch thermal properties. Starch-water suspension (30%) was 

sealed in an aluminum pan (Perkin-Elmer, Norwalk, CT) and allowed to equilibrate at 

room temperature for two hours before each analysis. The gelatinization temperature 

and enthalpy change of starch were determined by using a differential scarming 

calorimeter (DSC-7, Perkin-Elmer, Norwalk, CT) following the procedure of Jane et 

al.^-. An identical empty aluminum pan was used as the reference. 

Determination of iodine affinity of starch components and amylase content. The 

iodine affinities of amylose, amylopectin, and defatted starch^"* were determined by an 

automatic potentiometric titrator (702 SM Titrino, Metrohm, Herisau, Switzerland) 

following the procedure of Schoch^^ Data were recorded by using Metrodata software 

(Vesuv 2.0, Metrohm, Herisau, Switzerland) on a personal computer. The amylose 

content was calculated following the method of Takeda et al.^®. The measurement 

deviation of amylose content was calculated from standard deviations of starch, 

amylopectin, and amylose^' and statistical comparison was also performed^®. Apparent 

amylose content was calculated by dividing the iodine affinity of the starch by 19.0%, 

the typical value of iodine affinity for purified maize amylose 
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Starch components profile. The starch solution was prepared by dispersing 

starch in a DMSO solution, heating the solution in a boiling water bath (96°C) for 30 

min, stirring at room temperature overnight, precipitating and washing the starch 

precipitate with methanol, redissolving in hot water, and filtering through Whatman No. 

52 filter paper. Five milliliters of the starch solution containing 15 mg of starch was 

injected into a liquid chromatograph column packed with Sepharose CL-2B gel (2.6 i.d. 

X 90 cm). The eluant containing 1 mM NaOH and 25 mM NaCl was applied in an 

ascending direction with a flow rate of 30 mL/h, and 4.6-mL fractions each were 

collected and analyzed for total carbohydrate and iodine-staining blue value by 

following the procedure of Jane and Chen^'. 

Molecular structure of amylopectin. The amylopectin was debranched with 

Pseudomonas isoamylase^'. The debranched sample was filtered through a 0.45-/im 

nylon syringe filter (Alltech Associates, Deerfield, IL). The branch-chain length 

distribution profile of amylopectin was determined by using a Bio-Gel P-6 gel 

permeation chromatograph column (1.5 i.d. x 95 cm). After injection of 2 mL 

hydrolysate containing 10 mg of debranched amylopectin, samples were eluted with 

water in a descending direction with a flow rate of 30 mL/h. Fractions (2 mL each) 

were collected and analyzed for carbohydrate concentration by an anthrone-sulfuric acid 

method^'-''" and reducing sugar concentration by a modified Park-Johnson method^' '". 

The peak chain length was calculated by dividing the total carbohydrate concentration 

by reducing sugar concentration. 
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Chain-length distribution of amylopectin was also performed by using a high-

performance anion exchange chromatograph (HPAEC) (Dionex, Sunnyvale, CA) 

equipped with a DX-300 Gradient Chromatography System, a Pulsed Amperometric 

Detector (PAD), and a CarboPac PAl (4 x 250 mm) column and a CarboPac PA guard 

column (3 x 25 mm) (Dionex). A sodium nitrate gradient was applied as described by 

Wong and Jane''". 

Statistical analysis. Data were analyzed by using Student's t test in a general 

linear model (GLM) procedure on a SAS system (release 6.06, SAS Institute, Cary, 

NC). Means, standard deviations, and significance levels were calculated. 

Results and Discussion 

To avoid temperature effects on other parts of the plants (e.g., roots and leaves), 

a heating mantle was used to wrap each individual maize ear to control the 

developmental temperature of starch. Results showed that the dry weight of kernels 

developed at 25°C was greater than that at 35°C (Table 1). The effect of temperature 

on kernel dry weight was more pronounced for ICI92 (37.9% decrease) than for ICI63 

(13.1% decrease) when temperature was increased from 25 to 35°C. Additionally, at 

the 25°C developing temperature, kernel dry weight of ICI92 was 24.9% greater than 

that of ICI63. At 35°C, however, the weight of ICI63 was only 5.2% greater than 

ICI92. 
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Kernels developed at 25°C had greater density than those at 35°C. When 

temperature increased from 25°to 35°C, ICI92 suffered a greater kernel density loss 

(10.08%) than did ICI63 (8.47%). This kernel density loss is an important quality 

concern because neither of the kernels grown at 35°C met the criteria for kernel density 

for dry milling food-grade maize in which the major grit fraction must be greater than 

1.27 g/mL-®. 

Table 2 shows proximate chemical compositions of the maize kernels. Moisture 

contents of these samples were 12 to 13%; the protein contents were about 12%. ICI63 

had greater starch contents (ca 70%) than ICI92 (64.1 and 62.0% for 25 and 35°C, 

respectively). Temperature variation did not significantly affect the proximate chemical 

compositions of the kernels. From the kernel dry weight and proximate composition 

data, the total dry matter of the maize kernel decreased as developmental temperature 

increased. ICI92 suffered more severe dry matter loss than did ICI63. 

ICI63 had greater dispersity of granule size distribution than did ICI92 (Table 3). 

Both ICI63 and ICI92 grown at 35°C had greater populations of small granules. The 

number average starch granule size of ICI63 decreased from 11.96 to 10.45 /xm, 

whereas the average of ICI92 decreased from 10.78 to 10.33 /xm as temperature 

increased from 25° to 35°C (Table 3). The length/width (L/W) index, the value of 

maximum diameter divided by minimum diameter, was used as an index of the starch 

granule shape. L/W values equal 1 for the perfect round shape. The average L/W 

index of ICI63 increased from 1.19 to 1.24, which indicated more oval-shaped starch 

granules as temperature increased from 25 to 35°C, but no effect was found on the L/W 
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index of ICI92. The data support the early observation of Badenhuizen''^ that smaller 

and more abnormal-shaped starch granules are foimd in waxy maize starch developed at 

30°C incubation than those at 24°C. The results also showed that the impact of 

developing temperature on starch granule shape varied between different varieties. 

X-ray diffractograms of both starch varieties were similar and all showed a 

typical A pattern (Figure 1). The thermal properties of maize starch, however, varied 

with the developmental temperature change. ICI63 had a higher gelatinization onset 

temperature and a narrower range than did ICI93 (Table 4). When the developmental 

temperature increased from 25 to 35°C, onset gelatinization temperatures of ICI63 and 

ICI92 increased 2.35 and 1.81°C, respectively. These results, consistent with those 

reported for rice starch' and for wheat starch^", indicated that starch gelatinization 

temperature varied with both genetic background and developmental temperature. 

Sepharose CL-2B gel permeation chromatograms (Figure 2) show the molecular 

size distribution of starch. Distribution coefficients'*'', K^, instead of elution volumes, 

were used for comparison between samples. The peak retention volume of amylopectin, 

the first peak of the profile, was used as void volume, Ko=0, and the peak retention 

volume of glucose, the third peak, was used as total permeation volume, Ko=l. As 

developmental temperature increased from 25 to 35°C, both K^'s of amylose shifted to 

greater values (0.716±0.002 to 0.754±0.001 and 0.710±0.001 to 0.736±0.003 for ICI63 

and ICI92, respectively), which indicated smaller amylose molecular size. 

Table 5 shows the iodine affinities of starch and its components. As 

developmental temperature increased, iodine affinities and apparent and true amylose 
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contents of both starch varieties decreased. The starch iodine affinities and apparent 

amy lose contents were in agreement with Asaoka et al.''for rice, and Fergason and 

Zuber", for maize; however, Shi et al3° found that apparent amylose content of wheat 

increased with increased developmental temperature. The true amylose content resuh 

was consistent with that of rice starch'-The amylose iodine affinities of ICI63 were 

higher than those of ICI92; however, the amylopectin iodine affinities of ICI63 were 

less than ICI92. The results indicated iodine affinity of starch and its components 

varied vwth variety and developmental temperature. 

Figure 3 shows the chain-length distribution of debranched ICI63 and ICI92 

amylopectin on Bio-Gel P6 gel permeation chromatography. The elution profiles 

showed three peaks and were divided into three fractions, F1-F3, in order of elution. 

The peak chain-lengths and the percentage of each fraction of those samples are 

summarized in Table 6. The first fraction of the chromatogram (Fl) was a long branch-

chain fraction, similar to that reported for non-waxy rice amylopectin^®' and for 

sugary and normal maize"*^ as B3 and longer chains that stretched across three or more 

clusters in the amylopectin moleculesThe second peak, F2, was the medium branch-

chain (B2) fraction that stretched across two clusters in the amylopectin molecule. The 

third peak, F3, of the chromatograms was the short branch-chain (B1 and A) fraction. 

The chain length of the F2 slightly increased as developmental temperature increased, 

but the chain length of F3 showed no significant difference at different temperatures. 

The increase in chain-length of F2 correlated with the increase of gelatinization onset 
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temperature (Table 4). These results agreed with those reported for rice starches'-and 

for taro starch^". 

Developmental temperature also affected proportions of amylopectin branch-

chain fractions. The proportion of medium branch-chain, F2, increased and the 

proportion of short branch-chain, F3, decreased as developmental temperature increased. 

T h e s e  r e s u h s  a r e  i n  a g r e e m e n t  w i t h  t h o s e  f o r  t e m p e r a t u r e  e f f e c t  o n  r i c e  s t a r c h ' - T h e  

content of F1 correlated with the iodine affinity of amylopectin (Table 5), and this was 

in agreement with those reported by Takeda et al.^® and Hizukuri, et al."*®. 

Because Bio-Gel P6 can only reveal a macroview of length distribution of 

amylopectin branches, HPAEC-PAD was employed to show the individual components 

of each branch of amylopectin. Because the PAD detector response decreases when the 

branch-chain length increases, there was no quantitative resuh obtained in each 

individual profile. Direct comparisons between normalized detector response profiles 

were used to compare branch-chain length distributions, and the sum of the detector 

response from DP= 5 to 64 was used to normalize the profiles. The relative branch-

chain length distribution of amylopectin is shown in Figure 4. ICI63 amylopectin 

developed at 35°C had a greater concentration between DP= 19 and 36 and a lesser 

concentration of DP= 7 to 16 and 41 to 49 than that developed at 25°C. According to 

the modified cluster model proposed by Hizukuri"'®, the increased portion can be 

cataloged as B2 chains. Meanwhile, the branch chains of ICI92 developed at 35°C had 

a greater concentration between DP= 43 to 62 (equivalent to the B2 and B3 chain) and 

a lesser concentration of DP= 6 to 20 than that developed at 25°C. These results 
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indicated that the developmental temperature impact on maize amylopectin structure 

varied with the variety. 

According to the temperature effect results on structural changes of amylopectin. 

there are two possible explanations to elucidate the mechanism of the effects. In a 

developing maize kernel, there are multiple forms of starch branching enzyme, BE I, 

which preferentially transfers long chains'*^ with minor branching enzyme activity^", and 

BE Ila and lib, which transfer short chains with a major branching enzyme activity. 

High developing temperature favors BE I whose optimum temperature is 35°C'" instead 

of BE Ila and lib whose optimum temperatures are 25 and 15-20°C, respectively. 

Furthermore, higher developmental temperature might also weaken the double helix 

conformation of starch chain, which might be required for transferring branches by 

branching enzymes^'- and decrease the branching reaction rate. These factors may 

cause starch developed at 35°C to have more long branches than that developed at 

25°C. 

In conclusion, two maize inbreds, ICI63 and ICI92, with unrelated genetic 

background responded differently to changing developmental temperature from 25 to 

35°C. At 35°C, kernel weight and kernel density decreased, with ICI63 maintaining 

grain yield better than ICI92. The increased grain-developing temperature was 

responsible for changes in starch structure and property (increased small granules and 

gelatinization temperature, and decreased amylose content). ICI63 amylopectin had 

increased medium branch-chain fraction and decreased long and short branch-chain 
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fractions, whereas ICI92 had increased long and medium branch-chain fractions as 

developmental temperature increased. 
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Table 1. Kernel Dry Weight and Kernel Density Differences by Variety and 
Temperature' 

Sample Kernel dry weight^ (mg/kemel) Kernel density^ (g/ml) 

ICI63 25°C 179.1±2.4'' 1.323±0.00r 

35°C 155.7±2.3'= 1.211±0.007'= 

ICI92 25°C 238.5±2.0=' 1.29910.001'' 

35°C 148.0±1.7'' i . i e s t o . i M ^  

' Figures in the same column having the same superscript are not significantly different 
(P < 0.05). 

" Means from six subsamples of 10 kernels each for 25°C grown kernels and duplicate 
subsamples of 10-kemels each of four 35°C grown ears. 

^ Means from three subsamples for 25°C grown kernels and one sample each of four 
different 35°C grown ears. 
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Table 2. Proximate Composition of Maize Kernel from Different Developmental 
Temperatures (%)' 

Sample Protein" Starch^ Moisture 

ICI63 25°C 12.4310.36" 69.3011.64" 12.3810.12" 

35°C 11.8210.06'' 70.1411.50" 12.0310.08" 

ICI92 25°C 12.1710.31"'' 64.0911.62" 13.7310.10" 

35°C 12.5710.21" 62.14+2.00'' 13.0710.09" 

' Means and standard deviations form three subsamples; Figures in the same 
column having the same superscript are not significantly different (P < 0.05). 

" On dry basis. 
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Table 3. Granular Size of Maize Starch from Different Developmental Temperatures' 

Sample Diameter of Equivalent Circle L/W Index^ 
(Hm)^ 

Average Range Average Range 

ICI63 25°C 11.96±3.92'' 1.27-22.68 1.19±0.15'' 1.00-2.03 

35°C 10.45±4.47''= 0.20-25.34 1.24±0.23=' 1.00-3.26 

ICI92 25°C 10.78±3.18'' 2.35-19.64 1.1510.16"= 1.00-2.43 

35°C 10.33±3.20'= 1.21-18.49 1.15±0.13'= 1.00-1.80 

' Data form 690 starch granules; Figures in the same colvinm having the same 
superscript are not significantly different (P < 0.05). 

" Calculated from an area assumed to be perfect circle. 
^ Calculated by dividing maximum diameter by minimum diameter. 
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Table 4. Thermal Properties of Maize Starch from Different Developmental Temperatures' 

Sample To Tp Tc Range Enthalpy PHI 
CO (°C) CC) CC) J/g 

ICI63 25"C 69.1110.29" 71.9710.28" 82.1011.40'' 18.5911.24'' 14.2811.02"'' 0.7710.02" 

35°C 71.46+0.18" 74.94+0.18" 87.48+2.12" 20.6811.95'' 15.2110.62" 0.7410.05" 

ICI92 25"C 66.82+0.36= 72.98±0.36= 83.4111.26'' 24.5612.84" 14.1411.50"'' 0.5810.03'' 

35°C es.es+o.s?" 73.82i0.12'' 86.2611.70" 26.3912.20" 13.7211.21'' 0.5210.04" 

' Means and standard deviations from six measurements; Figures in the same column having the same 
superscript are not significantly different (P < 0.05); 
To: Onset temperature; Tp: Peak temperature; Tc: Conclusion temperature; PHI: Peak height index. 



www.manaraa.com

Table 5. The Iodine Affinity of Maize Starch and Its Components from Different Developmental Temperatures' 

Sample ^ ^starch TA ^•'^amylose TA ^'^amylopcctin Apparent 
Amylose (%)^ 

Amylose (%)^ 

ICI63 25°C 5.35±0.0r 19.29±0.15'' 1.56±0.13 = 28.1610.06" 21.3710.80"" 

35°C 4.82±0.06'' 19.3710.08'' 1.4110.01"= 25.3510.31'' 18.9810.35'' 

ICI92 25°C 5.2710.05'' 18.66±0.03'= 1.82+0.04'' 27.74+0.25'' 20.5110.38" 

35°C 5.1910.06'= 18.8110.19'' 2.1410.02'' 27.3410.30"= 18.3110.42" 

' Means and standard deviations from three measurements; Figures in the same column having the same 
superscript are not significantly different (P < 0.05); lA: iodine affinity (g/lOOg). 

" Calculated from (IAs^„^|,/IAa^y,ose)*100, where lA^n^yio^^ was assumed to be 19.0. 
Calculated from [(IA5igjj|,-IA3^y|j,pgj(jp)/(IAj„„y|g5g-IAjj^yippg^ijn)] 100. 

'' Deviations calculated from standard deviations of starch, amylopectin, and amylose and the estimated variance 
was used for the Student's t-test. 
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Table 6. Temperature Effect on Branch-Chain of Maize Amylopectin' 

Peak Chain Length Weight Percentage % 

Sample F2 F3 F1 F2 F3 

ICI63 25^ 39.9+3.5" 12.9+0.5" 6.8+1.5" 22.3+0.3'' 70.811.8' 

35°C 42.1±2.9^ 14.0+0.6" 5.8+1.4" 25.110.7" 69.110.6" 

ICI92 25"C 38.7+2.9' 13.5±0.7" 7.7+1.5" 20.310.2'' 72.013.3' 

35''C 41.912.6" 13.110.7" 8.112.2" 21.811.5'' 70.112.7' 

' Means and standard deviations from three or four measurements; Figures in the same column having 
the same superscript are not significantly different (P < 0.05); The fractions, F1 to F3, are 
corresponding to Figure 4. 
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Figure 1. X-Ray diffractogram of maize starch from ears developed at different 
temperatures. The signals recorded from diffraction angle (20) 4 to 40 
degrees. 
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Figure 2a. Sepharose CL-2B chromatograms of ICI63 maize starches developed at 
different temperatures. Glucose (Glc) was used as the marker. 
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Figure 2b. Sepharose CL-2B chromatograms of ICI92 maize starches developed at 
different temperatures. Glucose (Glc) was used as the marker. 
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Bio-Gel P6 chromatogram of isoamylase debranched ICI63 maize 
amylopectin (DP= degree of polymerization). 
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Figure 3b. Bio-Gel P6 chromatogram of isoamylase debranched ICI92 maize 
amylopectin (DP= degree of polymerization). 
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Figure 4. Temperature effect on branch-chain length distribution of ICI maize 
amylopectin analyzed by HPAEC-PAD (mean of three measurements). 
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TEMPERATURE EFFECT ON RETROGRADATION OF 

AMYLOSE SOLUTION' 

A paper to be submitted to Carbohydrate Research 

Ting-jang Lu" and Jay-lin Jane"- ^ 

Abstract 

Commercial potato amylose was used to examine the temperature effects on 

retrogradation of diluted amylose solutions. Amylose solutions were prepared in two 

different ways, water dispersion and potassium hydroxide solubilization. The 

retrogradation rate decreased as incubation temperature increased (5 to 45°C). For a 3.5 

mg/mL water-dispersed amylose solution, initial retrogradation rate decreased from 58.8 

to 7.1% as incubation temperature increased. After the solution was incubated at 25°C 

for 100 days, ~ 50% of amylose molecules with small molecular weight (DP„ 180 and 

DP^ 290) precipitated out from solution. The chain length of retrograded amylose 

' Journal Paper No. J-#### of the Iowa Agriculture Experiment Station, Ames, Iowa. 

Project No. 3258. 

- Dept. Food Science and Himian Nutrition, Iowa State University, Ames, lA 50011. 

^ Corresponding author. 
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crystallites increased from DP„ 39 to 52 and DP^^, 47 to 72 as incubation temperature 

increased from 5 to 45°C. Three different concentrations of amylose solutions (10, 7 

and 4 mg/mL) were prepared by using potassium hydroxide and then neutralized with 

hydrochloric acid. Initial retrogradation rate decreased (84.9 to 7.4 %) as amylose 

concentration decreased and as incubation temperature increased in the 0.1 M potassium 

chloride solution. The potassium hydroxide solubilization procedure and the presence of 

potassium chloride retarded the retrogradation rate and affected the chain length of 

retrograded amylose crystallite. 

Introduction 

Starch retrogradation has an important effect on the texture of many starch-

containing foods, e.g., the staling of bakery products and the eating quality of cooked 

rice. The retrogradation process has been used for fractionating amylose from starch' ", 

and preparing bulking agents (dietary fiber), known as resistant starch^. The process is 

also required for branch formation during starch biosynthesis''•®. 

Retrogradation is a process in which gelatinized starch molecules reassociate to 

form an ordered structure (double helix)In its initial phases, two or more starch 

chains may form a simple juncture point which then may develop into more extensively 

ordered regions'""'*. The retrogradation process can happen on both amylose and 

amylopectin fractions'- Amylopectin retrogradation is reversible but amylose 

re t rograda t ion  i s  essen t ia l ly  i r revers ib le  a t  t empera tures  be low 100°C '° 'There fore ,  
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it is extremely difficult to redissolve retrograded amylose without dimethyl sulfoxide or 

alkali. 

Amylose is essentially a linear molecule with few branches. Like other linear 

polymers, amylose molecules have a strong tendency to crystallize. In aqueous solution, 

amylose molecules rapidly associate to build up molecular aggregates that soon exceed 

colloidal dimensions and precipitate '• The aggregation process is rapid, and the 

molecular size of amylose is too large to produce perfect crystallites^"- As a result, 

the precipitate is a mixture of crystalline and amorphous regions as indicated by X-ray 

diffraction patterns and acidic or enzymatic hydrolysis'- Retrograded amylose 

precipitate shows an A- or B-type X-ray pattern that depends on the retrogradation 

conditions--'"'. The crystalline region can be 30 to 65% of the total amylose gel, and 

the amount differs with the retrogradation conditions^"' This crystalline region is 

resistant to acidic and enzymatic hydrolysis'- The conformation of the resistant 

crystalline region is proposed to be double helices interspersed with amorphous 

regions"'*' similar to the starch chains in starch granules'- The chain length of 

the crystalline region from different studies varies^"-

The retrogradation rate of amylose is dependent on molecular size, temperature, 

concentration, pH, and the presence of other chemical agents in the solution"'^'. It has 

been shown that amylose from different starch sources retrograde at different rates, 

depending upon their average molecular weight^®-Amylose with DP 80 to 100 

has the highest retrogradation tendency''^"''^ Temperature is negatively correlated with 

retrogradation rate^'. Suzuki et al.''® reported that an increase of incubation temperature 



www.manaraa.com

96 

temperature (0 to 30°C) of a soluble starch solution resulted in an increase of the 

thermal transition temperature of retrograded starch. High pH deprotonates the hydroxyl 

group of amylose, and charge repelling inhibits the retrogradation process. Sugars, as 

additives, increase retrogradation rate, whereas salts affect the rate of retrogradation 

differently, depending on the salt species and concentration^^' Surfactants, lipids 

and long chain alcohols can form complexes with amylose and prevent or inhibit 

retrogradation. 

The double helical conformation similar to the retrograded amylose is proposed 

as a requisite for branch formation during starch biosynthesis'"'®. The glucan transfer 

reaction catalyzed by branching enzyme is temperature dependent®'-®-. Temperature 

affects not only branching enzyme activities but also substrate conformation. At higher 

temperature, double helix formation rate is slower and there are more possibilities to 

form longer crystalline fragments. In this study, dilute amylose solutions were used as a 

model system to investigate the temperature effects on double helical conformation of 

starch chains. In addition to the branching enzyme activity alternation®^, this study 

aimed to provide an explanation for amylopectin developed at high temperature 

contained a higher proportion of long branch-chain®^"®®. 
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Experimental 

Materials. Potato amy lose (Type III) and porcine pancreatic a-amylase were 

purchased from Sigma Chemical Co. (St. Louis, MO). Pullulan molecular weight 

standards (Shodex Standard P-82 kit, Showa Denko K.K., Tokyo, Japan) were 

purchased from Millipore Waters (Mildord, MA). The molecular weights and 

polydispersities of the standards were: 853,000, 1.14; 380,000, 1.12; 186,000, 1.13; 

100,000, 1.10; 48,000, 1.09; 23,700, 1.07; 12,200, 1.06; 5,800, 1.07. Maltotetradecaose 

was purchased form Nakano Vinegar Co. (Aichi, Japan) and maltoheptaose and maltose 

was from Aldrich Chemical Co. (Milwaukee, WI). Mlatotetradecaose, maltoheptaose 

and maltose were used as oligosaccharide standards. Other chemicals were reagent 

grade, purchased from Fisher Scientific (Springfield, NJ) and used without further 

treatments. 

Preparation of retrograded amylase. Two methods were used to prepare 

amylose solutions. 

A. Water dispersion of amvlose: Potato amylose was wetted with a few drops of 

methanol before being dispersed in water. The aqueous suspension was maintained at 

85-90°C with continuous stirring for 6 hr to dissolve amylose and to evaporate the 

methanol (some residual butanol present in commercial amylose preparation might be 

removed). To remove insoluble substances, the solution was filtered through Whatman 

No. 4 filter paper. The amylose solution was dispensed into glass vials and autoclaved 
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at 125°C for 30 min for sterilizing and then incubated at 5, 15, 25, 35 and 45°C for 

periods of time to facilitate retrogradation of amylose. 

B. Potassium hydroxide solubilization of amvlose: Potato amylose was dispersed in 0.5 

N potassium hydroxide and agitated with a stirring rod to avoid the formation of 

insoluble lumps. The mixture was placed in a refrigerator (4°C) with occasional stirring 

until it became a clear solution. The solution was then neutralized by using 0.5 N 

hydrochloric acid and diluted to designated concentrations (4, 7, and 10 mg/mL). The 

final concentration of potassium chloride was at 0.1 M and at pH 6.0. Amylose 

solutions were dispensed into glass vials and autoclaved at 125°C for 30 min for 

sterilizing and then incubated at 5, 15, 25, 35, and 45°C for extended time periods to 

facilitate formation of retrograded amylose precipitate. 

Preparation of amylose crystallite. Amylose crystallite was obtained by 

hydrolyzing retrograded amylose with porcine pancreatic a-amylase or with 16% 

sulfuric acid at 25°C for 30 days (manually shaken everyday)^". The crystallites 

remaining after enzyme and acid treatments were washed with deionized water and 

collected by centrifuging at 6,700 xg, for 15 min (JA-21 Beckman Instruments, 

Fullerton, CA). The crystallite was solubilized in dimethyl sulfoxide (DMSO) (90%) 

and heated in boiling water for 20 min. The chain length of the crystallite was 

determined by using high-performance liquid chromatography-size-exclusion 

chromatography (HPLC-SEC). 
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Molecular weight of potato amylose. Molecular weight of potato amylose was 

determined by measuring its intrinsic viscosity and by using HPLC-SEC. 

A. Intrinsic viscositv method: Viscosity average degree of polymerization (DP^) of the 

amylose was determined by measuring intrinsic viscosity. Intrinsic viscosity of potato 

amylose was determined by using a Cannon-Fenske capillary viscometer (Fisher 

Scientific, Springfield, NJ) in both 0.5 M potassium hydroxide and dimethyl sulfoxide. 

The empirical Mark-Houwink constants, K and a, were 8.50 x 10'^ 0.76 for potassium 

hydroxide and 3.06 x 10'^, 0.64 for dimethyl sulfoxide, respectively, and were used for 

calculating the molecular weight of amylose®'. 

B. HPLC-SEC method: Potato amylose was dispersed in 90% dimethyl sulfoxide and 

heated in a boiling water bath for 20 min and then stirred at room temperature overnight 

and filtered through a 0.45 |j,m nylon membrane before being injected into the 

chromatographic system. An HP 1050 Series Pump System equipped with a 20 fiL 

sample loop and an HP 1047A Refractive Index Detector (Hewlett Packard, 

Wilmington, DE) was used for the analysis. An Ultra-Ware Integrated HPLC Mobile 

Phase Handling System (Vineland, NJ) was employed to filter, sparge, and pressurize 

the eluent with heliimi. The mobile phase used was deionized water from a Milli-Q 

water system (Millipore Co., Bedford, MA) and filtered through a 0.2 fim nylon 

membrane. Potato amylose was analyzed by three sequentially cormected columns of 

TSK-GEL (G6000PWXL, G4000PWXL and G3000PWXL (300 x 7.8 mm)) with a 

PWXL Guardcolumn (40 x 6 mm) (Tosohaas, Montgomeryville, PA) at 80°C and a 0.6 

mL/min flow rate. The refractive index detector was maintained at 50°C. 
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Chromatographic data were collected and processed on a NEC computer with Maxima 

820 gel permeation chromatographic software (Millipore, Waters Chromatography Div., 

Milford, MA). The narrow standard calibration was performed by using pullulan and 

malto-oligosaccharide standards®^'®®. A cubic standard curve was calculated using log 

molecular weight versus standard retention time. For the determination of the molecular 

weight averages, the chromatogram was divided into a number of slices and the 

molecular weight of slices was determined by calibration curve. The slice interval was 

set at 10 sec and the molecular weight distribution was assumed to be monodisperse 

The number- and weight-average molecular weight (M„ and M^^,) were calculated by 

following their definition®'"'®: 

In the equations, A; is the area of slice i and Mj is the molecular weight of slice i. 

Degree of polymerization (DP) was calculated as molecular weight divided by 162. 

Polydispersity was used to describe the molecular weight distribution of polysaccharide 

and was defined as®': 

M D=^ 
Mn 
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Rate of amylose retrogradation. The rate of amylose retrogradation was 

determined by measuring the decrease in amylose concentration in solution as 

retrogradation proceeded. The amylose concentration was determined by measuring the 

total carbohydrate content of the supernatant using the phenol-sulfliric acid method'^. 

The retrograded amylose was removed from the supernatant solution by centrifiiging at 

11,500 xg for 10 min (Model 59A Microcentrifuge, Fisher Scientific, Springfield, NJ). 

Morphology of the retrograded amylose. The microstructure of retrograded 

amylose prepared by the water dispersion method was observed by using JEOL JSM-35 

scarming electron microscope (JEOL Ltd., Tokyo, Japan). The lyophilized retrograded 

amylose gel was attached to a specimen stud, coated with gold-palladium alloy, and 

representative micrographs were taken at a 10,000x magnification. 

Molecular weight of amylose crystalline fragment. Chain length of retrograded 

amylose crystalline fragment was determined by using HPLC-SEC with two sequentially 

connected columns of TSK-GEL (G4000PWXL and G3000PWXL) with the PWXL 

Guardcolumn as previously described at a 50°C with 0.5 mL/min flow rate. Other 

operating conditions were the same as previously described. 
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Results and Discussion 

The molecular weight and distribution profile of potato amylose determined by 

using capillary viscometry and HPLC-size exclusion chromatography (SEC) are shown 

in Table 1 and Figure 1. The amylose intrinsic viscosity was smaller than that reported 

by Greenwood^' but similar to that reported by Foster'^ Potato amylose degree of 

polymerization determined by using viscometry (DPJ were 1,900 and 2,060 in 0.5 N 

potassium hydroxide and dimethyl sulfoxide, respectively. The number- and weight-

average of degree of polymerization (DP„ and DP^) obtained by HPLC-SEC was 250 

and 1490, respectively. The DP values might be underestimate by using HPLC-SEC 

because amylose had a slightly branched structure and a random coil conformation 

which resulted in a less extended molecule compare to pullulan standards^'" ®''. It was 

reported that the molecular weights of amylose specimens are about 35% larger than 

those of the pullulan specimens eluted at the same elution volume by HPLC-SEC®°. 

The polydispersity of the potato amylose molecule was 5.953, which was similar to a 

typical synthetic polymer value^". To prevent entanglement between amylose molecules, 

the amylose was dissolved in 90% dimethyl sulfoxide before being injected to the 

chromatographic system. The dimethyl sulfoxide was separated from amylose and was 

eluted at the end of the profile. 

To avoid effects of other chemicals, e.g. potassium chloride, a diluted water-

dispersed amylose solution (without using alkaline solution) was prepared and used for 

the study. The original solution concentration determined by using phenol-sulfuric acid 
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method was 3.5 mg/mL. The retrogradation time course was shown in Figure 2. The 

incubation temperature significantly affected the retrogradation rate of amylose solution, 

which agreed with that reported by Whistler^'. In the solution incubated at 5°C, most of 

amylose molecules rapidly retrograded and precipitated from solution within the first 9 

days. At the end of the 9th day, 78% of amylose precipitated out. After 9 days, 

amylose continued to retrograde at a slower rate. The solution incubated at 15°C 

followed a similar pattern, but the retrogradation rate was slower than that incubated at 

5°C. On the 85th day, retrogradation at 15°C only reached 71% and was expected to 

continuously increase. For the solution incubated at 25 °C, the retrogradation rate was 

much slower than those at 5 and 15°C, and the retrogradation pattern was different. 

About 12.5% of amylose retrograded within the first day and followed with a 17-day 

lag period where little additional retrogradation occurred. After the lag period, amylose 

continued to retrograde at a faster rate and reached 45% on the 85th day, and 

retrogradation was expected to continue. The lag period is attributed to the time 

required for nucleation process^'. According to the retrogradation time course pattern, 

there were two main stages in amylose retrogradation with different rates, which the 

rates of the first stages were faster than the one of the second stage. The retrogradation 

percentage of first stage was decreased as incubation temperature increased. The 

percentages of retrogradation for the first stage were 78, 56, 18% for 5, 15, 25°C, 

respectively. 

For the solutions incubated at higher temperature, less than 10% of amylose 

retrograde within the first day, /. e. 9.2 and 7.1% for 35 and 45°C, respectively, and 
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after that no increase in retrogradation was found up to the 85th day. The correlations 

between the incubation time and the percentage retrogradation at the high temperatures 

were low (correlation coefficient, r= 0.28 and 0.04 for 35 and 45°C, respectively). The 

retrogradation rate within the first 24 hr was defined as initial retrogradation rate and 

are shown in Table 2. The initial retrogradation rate well reflected the decrease of 

retrogradation as the temperature increased. 

To study the molecular profile of remaining amylose, the supernatant after 100-

day incubation was subjected to HPLC-SEC analysis. The molecular profiles of 

remaining amylose in the supernatant at different temperatures are shown in Figure 3. 

At 5°C, most amylose molecules were precipitated only with a small amount of large 

molecules remaining in the solution. Those molecules which remained could be 

amylopectin impurity or entangled amylose. At 15°C, most amylose molecules also 

retrograded and precipitated out. There were a substantial amount of large molecules 

eluted at the void volume that remained in the supernatant. The amount of molecules 

eluted at the void volume weis greater than that in the original solution. The increase in 

large molecules was attributed to entangled amylose molecules. At 25°C, about half the 

amylose retrograded and the other half remained in the supernatant. It was plausible 

that during amylose retrogradation, the molecules initially entangled together and the 

aggregates'*- eventually precipitated out. At 35 and 45°C, most of the molecules 

remained in solution, but the entangling phenomenon was obvious. The last peak of the 

chromatogram was attributed to methanol residue which was used for dispersing 

amylose or butanol residue that was present in the amylose sample. 
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By comparing the molecular profiles of supernatant incubated at different 

temperatures (Figure 3), retrogradation was a selective process based on molecular size. 

The fraction of small molecules retrograded preferably and precipitated first. To 

determine the molecular weight of the fraction which had a high tendency to retrograde, 

the chromatogram of the original amylose was subtracted by that of the supernatant after 

100-day incubation. The difference between the chromatograms of the original and the 

supernatant after 100 days at 25°C is shown in Figure 4. The differential chromatogram 

showed that the portion above the baseline was the molecules that aggregated and 

became precipitation or entangled molecules, and the portion below the baseline 

represents those developed through entanglement, during the incubation. The DP^, DP,v 

and polydispersity of this portion were 180, 290 and 1.6213, respectively. The results 

showed that small size amylose molecules had a higher tendency to retrograde. This is 

consistent with amylose of DP 80-100 having a greater tendency to retrograde''^'^^ 

The morphology of retrograded amylose differed with incubation temperature. 

At lower temperature (5, 15, 25°C), amylose formed a gel and precipitated out from the 

solution (Figure 5). The network structure of amylose gel was better constructed as the 

incubation temperature increased, because the gel formation at higher temperature 

required more time and this allowed the amylose molecules to align over a longer 

period. In the amylose solutions incubated at 35 and 45°C, a small amount of fiber-like 

precipitate formed instead of gel. It is proposed by Greenwood^' and Gidley and 

Bulpin'*^ that chain lengths of amyloses have a profound effect on the aggregation of 

amylose in aqueous solution. Amyloses with small chain lengths (less than 110) have 
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predominant behavior of precipitation over gelation which tends to occur particularly for 

higher chain lengths. For short chain amylose, chain aligrunent was dominate and 

eventually led to precipitation instead of gelation-'-

The chain length distribution of the retrograded amylose crystallite was examined 

by the HPLC-SEC analysis. A size-exclusion chromatogram of amylose crystallite from 

retrograded amylose at 5°C was shown in Figure 6. The chain length distribution of the 

crystallite showed a narrow polydispersity, and the values varied between 1.215 and 

1.381. The polydispersity of amylose crystallite showed an increased trend as the 

incubation temperature increased. The temperature effect on crystalline chain length 

was obvious. The DP„ increased from 39 to 52 and DP^ increased from 47 to 72 when 

temperature increased from 5 to 45°C (Table 3). The data may provide a structure to 

illustrate the result of Suzuki et al.''® that the thermal transition temperature of 

retrograded soluble-starch is higher for the starch retrograded at higher temperature. 

The crystallite chain length prepared at 5°C was in agreement with that reported by Jane 

and Robyt^". The values of crystallite chain length prepared at 5°C determined by 

HPLC-SEC were in good agreement with the one determined by modified Park-Johnson 

method^'' ®-. The results indicated the difference in hydrodynamic volume of crystallite 

and pullulan is negligible because of the small molecular size and lack of branch points 

on the crystallite produced in this study. 

To prepare more concentrated amylose solutions, amylose was dispersed in a 

potassium hydroxide solution followed by neutralization with hydrochloric acid solution. 

Retrogradation rates of amylose solutions prepared by the potassium hydroxide 
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solubilization procedure are shown in Figure 7. Temperature^^ and amylose 

concentration"' are known to significantly affect the retrogradation of amylose 

solution. Retrogradation rate increased as the amylose concentration increased and the 

incubation temperature decreased. When an amylose solution (10.8 mg/mL) incubated 

at 5°C, amylose molecules rapidly retrograded and precipitated from the solution within 

the first 3 days. By the 3rd day, 93% of the amylose precipitated out. After the 3rd 

day, amylose continued to retrograde at a slower rate. The retrogradation reached a 

plateau after 25 days, and most of the amylose (99.5%) was precipitated. The solution 

incubated at 15°C followed a similar pattern, except the retrogradation rate was slower 

than that at 5°C, and more time was needed to reach the plateau. The solution 

incubated at 25 °C retrograded much slower than 5 and 15°C, and the reaction pattern 

was slightly different. After 33 days, the retrogradation rate decreased but did not reach 

a plateau up to day 101. The retrogradation pattern of the solution at 35°C was 

different from those at 5, 15 and 25°C, with 14.9% of the amylose retrograded within 

the first day. After day one, a 24-day lag period followed and the retrogradation of 

amylose did not significantly increase. After the lag period, amylose continued to 

retrograde but did not follow a linear pattern. The reason for stepwise retrogradation 

pattern is not clear. One possible explanation was that different fractions of molecules 

with different retrogradation tendency retrograded in different incubation periods. 

Another possibility was that retrograded amylose double helixes were aggregated into 

larger and denser gel and precipitated by batch. For the solutions incubated at 45°C, 

there was no correlation (correlation coefficient, r = 0.05) between the incubation time 
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and the percentage of retrogradation. Within the first day, 11.9 % of the amylose 

retrograded, and after that no increase in retrogradation was foxmd up to 101 days. The 

retrogradation of the solution was inhibited at 45°C; however, 11.9% of the amylose 

molecule had a very high tendency to retrograde. 

The retrogradation rate decreased as amylose concentration decreased. The 

retrogradation of the 7.0 mg/mL solution at 5°C reached the plateau after 55 days. The 

retrogradation of the solution at temperature higher than 15°C did not reach a plateau 

after 103 days. The retrogradation rate of the 4.1 mg/mL amylose solution was 

significantly lower than those of more concentrated solutions. The amylose solution at 

5°C rapidly retrograded and precipitated from solution after 11 days. On the 11th day, 

70.7% of the amylose molecules was found precipitated from aqueous solution. After 

the 11th day, amylose continued to retrograde at a slower rate. The solutions incubated 

at 35 and 45°C did not show a correlation (r* < 0.1) between incubation time and the 

percentage retrogradation. A fraction of about 10% with a high tendency to retrograde 

within first day was found in all the solutions, regardless of the sample concentration 

and incubation temperature. 

Initial retrogradation rate was determined to investigate the retrogradation of 

amylose solutions. The initial retrogradation rate correlated well with sample 

concentration and incubation temperature (Table 2). The initial retrogradation rate 

decreased as amylose concentration decreased and incubation temperature increased. At 

5°C incubation temperature, the concentration effect was more pronounced than that at a 

higher temperature. The potassium hydroxide solubilization procedure changes the 
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conformation of amylose through charge repelling and generated potassium chloride as a 

result of neutralization. The conformation change could retard the retrogradation rate of 

amylose, comparing with those amylose solutions at similar concentration (3.5 and 4.1 

mg/mL) (Table 2, Figure 2 and 7c). The initial retrogradation rate of the solution 

without alkaline dispersion decreased from 58.8 to 18.1% (Table 2). This result is in 

agreement with the reports of Kitamura et al.^^ and Suzuki et al.^'. 

The crystalline chain length profile showed a narrow distribution (Figure 8). The 

DPn ranged from 27 to 50 and DP^^, from 37 to 57, and varied with incubation 

temperature and amylose concentration (Table 4). The chain length from 10.8 and 7.0 

mg/mL solution were about 32 and 45 for number- and weight-average DP, 

respectively. There were two exceptions, for 7.0 mg/mL at 35°C and 10 mg/mL at 

45°C, in which chain length was about 27 and 37 or 38 for DP„ and DP„,, respectively. 

The DP of crystallites from diluted amylose solution (4.1 mg/mL) showed trend toward 

higher values as the incubation temperature increased (Table 4). The DP^ increased 

from 34 to 50 and DP„ increased from 45 to 57 as the temperature increased from room 

temperature or below (25°C) to 45°C. 

The retrogradation rates of diluted amylose solutions decreased as concentrations 

decreased and incubation temperature increased. The alkaline-dispersion procedure and 

the presence of potassium chloride retarded the retrogradation rate. There was an 

interaction effect of the concentration and the incubation temperature on retrogradation 

rate. In 3.5 mg/mL water-dispersed amylose solutions incubated at 25°C for 100 days, 

small molecular weight with DP^ 180 and DP^^, 290 precipitated out from the solution. 
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The chain length of retrograded amylose crystallites from water-dispersed amylose 

solution increased from DP„ 39 to 52 and from DP„ 47 to 72, as incubation temperature 

increased from 5 to 45°C. The effect of the potassium hydroxide-dispersion procedure 

and the presence of potassium chloride on the chain length of retrograded amylose 

crystallites did not provide a linear trend. 
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Table 1. Molecular Size of Potato Amylose Determined by Various Methods' 

Methods DPv DP„ DP„ DPpeak Poly
dispersity" 

ViscometryKOH 125 1900 — — — 

ViscometryoMso 105 2060 — — — 

HPLC-SEC^ — — 250 1490 430 5.953 

' [t|]: intrinsic viscosity (ml/g) measured in 0.5 N potassium hydroxide 
and dimethyl sulfoxide ; DP: degree of polymerization; DP^ calculated 
from intrinsic viscosity; DP^, DP„, DP^ and DPpej. stand for number-, 
weight", z-average and peak DP. 

' Polydispersity: DP,yDPn 
^ Pullulan standards were used for molecular weight calibration. 

Table 2. Initial Retrogradation Rate (%) of Amylose Solution in First Day' 

Temp. 5°C 15°C 25°C 35°C 45°C 
mg/mL 

Water dispersed amylose" 

3.5^ 58.8±3.3 17.4±0.9 12.5±0.8 9.2±1.2 7.1±0.4 

Potassium hydroxide solubilized amylose^ 

4.V 18.1±1.0 10.1±0.7 10.3±0.7 9.1±0.3 7.410.6 

7.0^ 58.9±1.3 31.1±3.9 13.5+0.9 12.4±0.3 11.110.5 

10.8^ 84.9±0.1 47.0±2.6 17.6±1.1 14.910.6 11.911.3 

' Mean and standard deviation of duplicate samples. 
" Amylose was dispersed in water and heat in boiling water bath. 
^ Amylose was dispersed in potassium hydroxide and neutralized with 

hydrochloric acid; the final solution contained 0.1 M potassium chloride. 
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Table 3. Chain Length of Retrograded Amylose Crystallite Prepared by Water 
Dispersion Procedure at Different Incubation Temperature' 

Temp. Total DP„ DP^^ OPpj^jj Polydispersity 
°C retrogradation 

5 88.3±4.5 39±2 47±2 43±2 1.215+0.006 

15 70.8+0.9 40±1 50+2 45+2 1.241±0.012 

25 44.8+3.2 44+2 54±2 47±1 1.232±0.031 

35 14.2±2.6 45±2 58±3 51±3 1.294±0.012 

45 8.6±0.4 52±3 72±6 52±1 1.381±0.058 

' Means and standard deviations of duplicate samples for total retrogradation and 
triplicate samples for chain length determination. 

" Original amylose solution concentration was 3.5 mg/ml. 
^ Retrograded amylose semicrystalline was obtain by using a-amylase hydrolysis. 

After 85 days. 
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Table 4. Chain Length of Retrograded Amy lose Crystallite Prepared by Potassium 
Hydroxide/Hydrochloric Acid Procedure at Different Incubation Temperature' 

Cone, 
mg/ml 

Temp. 
°C 

Total 
retrogradation 

DP„ DPw DPpeak Poly-
dispersity 

4.1 5 96.6±2.0 34±1 45±2 44±1 1.350±0.010 

4.1 15 61.0±4.5 33±1 44±2 42±2 1.354±0.016 

4.1 25 11.6±0.5 33±3 44±3 42±4 1.353±0.051 

4.1 35 10.3+0.1 43±0 51±1 56±1 1.193±0.019 

4.1 45 8.210.8 50±3 57±3 59±4 1.125+0.027 

7.0 5 98.6±0.2 32±3 44±3 42±3 1.363±0.018 

7.0 15 85.4±1.7 33±1 46±1 43±1 1.404±0.018 

7.0 25 55.0±0.2 31±2 45±3 39±2 1.419±0.015 

7.0 35 48.0±2.2 27±2 38±3 31±2 1.412±0.032 

7.0 45 20.4+0.1 32±3 45+4 42+3 1.424±0.039 

10.8 5 99.7±0.1 31±3 45±4 41±4 1.430±0.012 

10.8 15 89.8±0.1 32±2 45±4 42±4 1.433±0.020 

10.8 25 75.7±0.1 32±2 47±4 41±3 1.454±0.022 

10.8 35 43.3±0.6 32±2 47±3 39±3 1.456±0.029 

10.8 45 11.1±1.1 27±2 37+3 31±3 1.397±0.027 

' Means and standard deviations of duplicate samples for total retrogradation and 
triplicate samples for chain length determination. 

" Retrograded amylose crystallite was obtain by using 16% sulfuric acid hydrolysis for 
30 days. 

^ After 104 days for concentrations of 4.1 and 7.0 mg/mL; and 101 days for 
concentration of 10.8 mg/mL. 
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Figure 1. Chromatogram of potato amylose on the HPLC-SEC. The -o- was 
molecular weight calibration curve of pullulan standards. indicated the 
void volume of the column. 
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Figure 2. The time course of amylose solution retrogradation. The original amylose 
concentration was 3.5 mg/mL. 
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Figure 3. The chromatogram of retrograded amylose supernatant from different 
incubation temperature. The original amylose solution was prepared with 
water dispersion procedure with concentration 3.5 mg/mL and incubated 
at different temperature for 100 days. 
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Figure 4. The difference chromatogram of original potato amylose and retrograded 
supernatant. The amylose solution was prepared with water dispersion 
procedure with concentration 3.5 mg/mL and incubated at 25°C for 100 
days. 
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Figure 6. The chromatogram of retrograded amylose crystallite hydrolyzed with 
porcine pancreatic a-amylase. The -o- was molecular calibration curve of 
pullulan standards. The original amylose solution was prepared with 
water dispersion procedure with concentration 3.5 mg/mL and incubated 
at 5°C for 85 days. 
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Figure 7a. The time course of 10.8 mg/mL amylose solution retrogradation. The 
amylose solutions were prepared with potassium hydroxide solubilization 
procedure. 
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Figure 7b. The time course of 7.0 mg/mL amylose solution retrogradation. The 
amylose solutions were prepared with potassium hydroxide solubilization 
procedure. 
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Figure 7c. The time course of 4.1 mg/mL amylose solution retrogradation. The 
amylose solutions were prepared with potassium hydroxide solubilization 
procedure. 
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Figure 8. Chromatogram of retrograde amylose crystallite hydrolyzed with acid 
hydrolysis. The -o- was molecular calibration curve of pullulan standards. 
The original amylose solution was prepared with potassium hydroxide 
solubilization procedure with concentration 4.1 mg/mL and incubated at 
5°C for 104 days. 
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GENERAL CONCLUSIONS 

High performance anion-exchange chromatography with pulsed amperometric 

detection made it possible to distinguish minor starch structural changes. It was shown 

that a sodium nitrate gradient performed more efficient separations of amylodextrin than 

the sodium acetate gradient. The improved technique has become an important tool for 

carbohydrate analysis, though quantitative analysis still needs improvement. 

Two genetically unrelated normal dent maize inbreds, ICI63 and ICI92, with 

different heterotic backgrounds responded differently to a developmental temperature 

change from 25 to 35°C. At 35°C, kernel weight and kernel density of both inbreds 

decreased, and ICI63 maintained the grain yield better than did ICI92. Increased grain 

developmental temperature affected starch morphology, chemical structure, and 

properties, such as increased small granule numbers and increased gelatinization onset 

temperature, as well as decreased amylose content. As developmental temperature 

increased, ICI63 amylopectin had an increased medium branch-chain fraction and 

decreased long and short branch-chain fractions, whereas, ICI92 had increased long and 

medium branch-chain fractions and a decreased short branch-chain fraction. 

The in vitro model study elucidated temperature effects on the substrates of 

branching enzymes for maize starch synthesis. The resuhs implied the complicity of 

starch biosynthesis and supported the hypothesis of branch formation mechanism of 

amylopectin proposed by Borovsky et al. (1975 and 1976). The hypothesis suggested 

that an intermolecule or intramolecule double helix conformation was required for 
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transferring branches by the branching enzymes. The retrogradation rate, an index of 

association and double helix formation in amylose molecules, decreased as a result of 

the increased temperature. The chain length of double helix segment of amylose 

increased as temperature increased. This study demonstrated that environmental 

temperature has an effect on the maize starch fine structure. In addition to temperature 

effects on starch synthesis enzymes, the simple physical phenomenon of growth 

temperature can directly affect the conformation of starch molecules. 
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APPENDIX 

The purpose of this work was to respond the following requests from my 

committee: 

1. Describe in more detail the number-average degree of polymerization (DPn) 

determination that I used in my dissertation. 

2. Give references to those papers which have used the method of size 

exclusion chromatography to determine polysaccharide DPn. 

3. Compare the value obtained from the method of size exclusion 

chromatography with the value from chemical analysis. 

Request 1. Describe in more detail the number-average degree of polymerization (OPJ 

determination that I used in my dissertation. 

Materials. Potato amylose (Type III) and porcine pancreatic a-amylase were 

purchased from Sigma Chemical Co. (St. Louis, MO). Pullulan molecular weight 

standards (Shodex Standard P-82 kit, Showa Denko K.K., Tokyo, Japan) were purchased 

from Millipore Waters (Mildord, MA). The molecular weights and polydispersities of 

the standards were: 853,000, 1.14; 380,000, 1.12; 186,000, 1.13; 100,000, 1.10; 

48,000, 1.09; 23,700, 1.07; 12,200, 1.06; and 5,800, 1.07. Maltotetradecaose was 

purchased form Nakano Vinegar Co. (Aichi, Japan) and maltoheptaose and maltose were 

purchased from Aldrich Chemical Co. (Milwaukee, WI). Maltotetradecaose, 
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maltoheptaose and maltose were used as oligosaccharide standards. Other chemicals were 

reagent grade, purchased from Fisher Scientific (Springfield, NJ) and used without 

further treatments. 

Molecular weight of potato amylose. Molecular weight of potato amylose was 

determined by using a chemical analytical method and HPLC-size exclusion 

chromatography (SEC). 

A. Chemical analytical method: 

The procedure described by Hizukuri et al.'-^ was followed for determining the 

degree of polymerization of amylose. 

B. HPLC-SEC method: 

Potato amylose was dispersed in 90% dimethyl sulfoxide and heated in a boiling 

water bath with stirring for 20 min and then stirred at room temperature overnight before 

being injected into the chromatographic system. An HP 1050 Series Pump System, 

equipped with a 20 fd sample loop and an HP 1047A Refractive Index Detector (Hewlett 

Packard, Wilmington, DE), was used for the analysis. An Ultra-Ware Integrated HPLC 

Mobile Phase Handling System (Vineland, NJ) was employed to filter, sparge, and 

pressurize the eluent with helium. The mobile phase was deionized water from a Milli-Q 

water system (Millipore Co., Bedford, MA) which had been filtered through a 0.2 fim 

nylon membrane. Potato amylose was analyzed by three sequentially connected columns 

of TSK-GEL (G6000PWXL, G4000PWXL and G3000PWXL (300 x 7.8 mm)) with a 

PWXL Guardcolumn (40 x 6 mm) (Tosohaas, Montgomeryville, PA) at 80°C and a 0.6 
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mL/min flow rate. The refractive index detector was maintained at 50°C. 

Chromatographic data were collected and processed on a NEC computer with Maxima 

820 gel permeation chromatographic software (Millipore, Waters Chromatography Div., 

Milford, MA). The narrow standard calibration^-" was performed by using pullulan and 

malto-oligosaccharide standards. A cubic standard curve was calculated using log 

molecular weight versus standard retention time. For the determination of the molecular 

weight averages, the chromatogram was divided into a number of slices and the 

molecular weight of each slice was determined by the calibration curve. The slice 

interval was set at 10 sec and the molecular weight distribution in each slice was assumed 

to be monodisperse. The number-average and weight-average molecular weights (Mn and 

MJ were calculated by the following definition""": 

In the equations, A; is the area of slice i and M; is the molecular weight of slice i. 

Degree of polymerization (DP) was calculated as molecular weight divided by 162. 

Polydispersity (D), used to describe the molecular weight distribution of the 

polysaccharides, was defined as: 

M D=^ 
Mn 
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Request 2. Give references to those papers which have used the method of size-

exclusion chromatography to determine polysaccharide DPn. 

Size-exclusion chromatography has been utilized in polysaccharide analysis for 

decades^-'^. Using same principles of separation, HPLC-SEC has shown a higher 

efficiency and has become an important analytical tool for a wide range of polymers and 

polysaccharides^- The concepts and calculations of the averages of molecular 

weights for polymers^" are aslo applied in the study of polysaccharides^-®. In Table 1, 

there are a number of publications in which HPLC-SEC was used to determine the 

molecular weights of polysaccharides. The references are listed at the end of this 

appendix. 

Table 1. References for Determination^ of Polysaccharide Molecular Weight by Using 
the Method of HPLC-SEC. 

Polymer Calibration and 
Detection 

Average 
Molecular Weight 
Reported 

References 

Rice amylose/ Pullulan & MALLS M„, M„, D 15 
debranched amylopectin 

Amylose pullulan DPn, DP„, D 16 

Amylose/ Pullulan; MALLS DPn, DP„, D 17 
debranched amylopectin 

Pullulan MALLS Mn, M„, D 18 

Amylose/ LALLS DPw 19 
debranched amylopectin CLj„ 

(continued) 
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Table 1. (continued) 

Polymer Calibration and 
Detection 

Average 
Molecular Weight 
Reported 

References 

Carrageenan MALLS M„ 20 

Debranched starch pullulan M„ 21 

chitosan MALLS M„, M^, D 22 

Amylose/amylopectin pullulan M„, Mw (pullulan 
equivalent) 

23 

Pectin pullulan/dextran M„, M^, D 24 

Mold polysaccharides dextran MW 25 

Starch dextran MW 26 

Barley starch dextran M„, M^, M^, D 27 

Starch pullulan Apparent MW 28 

Debranched 
amylopectin 

LALLS CL 29 

Debranched 
amylopectin 

LALLS; (pullulan for 
instrumental constant) 

CL,M„, M„, D 30 

Starch Dextran 31 

Amylose LALLS (pullulan for 
instrumental constant) 

M. 32 

Starch dextran MW 33 

Starch dextran MW 34 

' Abbreviations used in this table; Mn, M^, M^t number-, weight-, and z-average 
molecular weight; MW; molecular weight; DP; degree of polymerization; CL: chain 
length; D; polydispersity; MALLS; multiple-angle laser-light scattering; 
LALLS; low-angle laser-light scattering. 
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Request 3. Compare the value obtained from the method of size-exclusion 

chromatography with the value from chemical analysis. 

To compare results of chemical analysis and those obtained form HPLC-SEC 

method, potato amylose (purchased recently from Sigma Chemical Co. with different lot 

number to the one used in my dissertation research) and amylodextrin (obtained from 

enzyme hydrolysis of retrograded amylose crystallite prepared from amylose solution, 3.5 

mg/mL incubated at 5°C) were analyzed. The results from the different analytical 

methods are shown in Table 11. DPn of the potato amylose measured by using HPLC-

SEC method was 690. The DP„ of potato amylose measured by using modified Park-

Johnson method (chemical analysis) was 1040 and was about 50% larger than the one 

obtained from SEC. There are reasons for this difference. First, different methods 

measure different properties of the amylose molecule to obtain its DP. The chemical 

analysis measures the concentration of glucose anhydride units and the concentration of 

reducing ends to calculate the DP of amylose. The HPLC-SEC method measures 

hydrodynamic volume of the amylose molecule, and the DP was determined by 

comparing the molecular size to those of the known molecular weight standards. Second, 

pullulan of the same DP has a larger hydrodynamic volume than amylose because 

amylose has a slightly branched structure and a random coil conformation which results 

in a less extended molecule'- It was reported that the molecular weights of amylose 

specimens were about 35 % higher than those of the pullulan specimens at the same 
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elution volume of HPLC-SEC^^. The discrepancy of the difference may vary with the 

amylose specimens. 

However, the values of DPn's of amylodextrin measured by using the two methods 

were in good agreement. The DPn's of the amylodextrin were 37 and 39 from the 

modified Park-Johnson method and the HPLC-SEC, respectively. The difference was not 

statistically significant. The results indicated the difference in hydrodynamic volume of 

amylodextrin and pullulan is negligible because of the small molecular size and lack of 

branch points on the amylodextrin produced in this smdy. 

HPLC-SEC is a useful analytical tool for separating polysaccharides of different 

molecular size and determining their molecular weights and distribution. One major 

weakness of the method is the unavailability of amylose and amylopectin standards with 

narrowly distributed molecular weights. Pullulan, an analogous standard, has been 

chosen for this purpose'®- and used as a standard for water-soluble 

polysaccharide analysis^^. Using pullulan or dextran, standards currently available, 

results in errors in the determination of amylose and amylopectin molecular weights. 

Therefore, it is necessary to specify the standards used for calibration of the SEC profile. 

For accurately determining amylose and amylopectin molecular weights, it was suggested 

multiple methods or a molecular-weight sensitive detector'^-e, g. MALLS, should 

be used. 
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Table 2. Number-Average Degree of Polymerization of Amy lose and Amylodextrin 
Determined by Using Chemical Analysis and Size-Exclusion Chromatography'. 

Sample DP,p/ DPn.SEc' 

Potato amylose 1040±60 690±30 

Amylodextrin" 37±3 39+2 

' Means and standard deviations of triple determinations. 
^ From modified Park-Johnson method. 
3 From HPLC-SEC. 
" Retrograded amylose crystallite obtained by using porcine pancreatic a-amylase 

hydrolysis. 
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